Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model
- Corresponding author: Yong Yang, yangyong@cnjsjk.cn
Citation:
Jian-Hua Chen, Li-Qun Lu, Hong-Xia Zhao, Yong Yang, Xin Shu, Qian-Ping Ran. Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model[J]. Chinese Journal of Polymer Science,
;2020, 38(4): 371-381.
doi:
10.1007/s10118-020-2350-9
Voycheck, C. L.; Tan, J. S.; Hara, M. Polyelectrolytes: science and technology. Marcel Dekker, Inc., New York, 1993, p. 250.
Holm, C.; Joanny, J. F.; Kremer, K.; Netz, R. R.; Reineker, P.; Seidel, C.; Vilgis, T. A.; Winkler, R. G. Polyelectrolyte theory. in Polyelectrolytes with defined molecular architecture II. Berlin, Heidelberg, 2004, p. 67.
Chremos, A.; Douglas, J. F. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. J. Chem. Phys. 2016, 144, 164904−164913.
doi: 10.1063/1.4947221
Stevens, M. J.; Mcintosh, D.; Saleh, O. Simulations of stretching a strong, flexible polyelectrolyte. Macromolecules 2012, 45, 5757−5765.
doi: 10.1021/ma300899x
Toan, N. M.; Thirumalai, D. On the origin of the unusual behavior in the stretching of single-stranded DNA. J. Chem. Phys. 2012, 136, 235103−235108.
doi: 10.1063/1.4729371
Elder, R. M.; Jayaraman, A. Coarse-grained simulation studies of effects of polycation architecture on structure of the polycation and polycation-polyanion complexes. Macromolecules 2012, 45, 8083−8096.
doi: 10.1021/ma3011944
Bayramoglu, B.; Faller, R. Coarse-grained modeling of polystyrene in various environments by iterative Boltzmann inversion. Macromolecules 2012, 45, 9205−9249.
doi: 10.1021/ma301280b
Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: molecular dynamics simulations. Macromolecules 2011, 44, 5798−5816.
doi: 10.1021/ma2007943
Carrillo, J. M. Y.; Dobrynin, A. V. Detailed molecular dynamics simulations of a model NaPSS in water. J. Phys. Chem. B 2010, 114, 9391−9399.
doi: 10.1021/jp101978k
Saleh, O.; Mcintosh, D.; Pincus, P.; Ribeck, N. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 2009, 102, 068301.
doi: 10.1103/PhysRevLett.102.068301
Chang, R.; Yethiraj, A. Dilute solutions of strongly charged flexible polyelectrolytes in poor solvents: molecular dynamics simulations with explicit solvent. Macromolecules 2006, 39, 821−828.
doi: 10.1021/ma051095y
Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Counterion-correlation-induced attraction and necklace formation in polyelectrolyte solutions: theory and simulations. Macromolecules 2006, 39, 1920−1938.
doi: 10.1021/ma052086s
Dobrynin, A. V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049−1118.
doi: 10.1016/j.progpolymsci.2005.07.006
Limbach, H. J.; Holm, C. Single-chain properties of polyelectrolytes in poor solvent. J. Phys. Chem. B 2003, 107, 8041−8055.
doi: 10.1021/jp027606p
Micka, U.; Holm, C.; Kremer, K. Strongly charged, flexible polyelectrolytes in poor solvents: molecular dynamics simulations. Langmuir 1999, 15, 4033−4044.
doi: 10.1021/la981191a
Stevens, M. J.; Kremer, K. The nature of flexible linear polyelectrolytes in salt free solution: a molecular dynamics study. J. Chem. Phys. 1995, 103, 1669.
doi: 10.1063/1.470698
Dobrynin, A. V. Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. Curr. Opin. Colloid In. 2008, 13, 376−388.
doi: 10.1016/j.cocis.2008.03.006
Khokhlov, A. R.; Khalatur, P. G. Solution properties of charged hydrophobic/hydrophilic copolymers. Curr. Opin. Colloid In. 2005, 10, 22−29.
doi: 10.1016/j.cocis.2005.04.003
Burak, Y.; Ariel, G.; Andelman, D. Onset of DNA aggregation in presence of monovalent and multivalent counterions. Biophys. J. 2003, 85, 2100−2110.
doi: 10.1016/S0006-3495(03)74638-4
Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2015, 116, 786−808.
Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J. Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 2011, 44, 6641−6644.
doi: 10.1021/ma201678r
Wang, Y.; Zheng, M.; Meng, F.; Zhang, J.; Peng, R.; Zhong, Z. Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer. Biomacromolecules 2011, 12, 1032−1040.
doi: 10.1021/bm101364f
Lu, H.; Wang, J.; Bai, Y.; Lang, J. W.; Liu, S.; Lin, Y.; Cheng, J. Ionic polypeptides with unusual helical stability. Nat. Commun. 2011, 2, 206.
doi: 10.1038/ncomms1209
Alonso, M. M.; Palacios, M.; Puertas, F. Compatibility between polycarboxylate-based admixtures and blended-cement pastes. Cem. Concr. Compos. 2013, 35, 151−162.
doi: 10.1016/j.cemconcomp.2012.08.020
Malferrari, D.; Fermani, S.; Galletti, P.; Goisis, M.; Tagliavini, E.; Falini, G. Shaping calcite crystals by means of comb polyelectrolytes having neutral hydrophilic teeth. Langmuir 2013, 29, 1938−1947.
doi: 10.1021/la304618f
Reese, J.; Plank, J. Adsorption of polyelectrolytes on calcium carbonate-which thermodynamic parameters are driving this process. J. Am. Ceram. Soc. 2011, 94, 3515−3522.
doi: 10.1111/j.1551-2916.2011.04682.x
Yamada, K.; Takahashi, T.; Hanehara, S.; Matsuhisa, M. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res. 2000, 30, 197−207.
doi: 10.1016/S0008-8846(99)00230-6
Ran, Q.; Qiao, M.; Liu, J. Influence of Ca2+ on the performance of poly(acrylic acid)-g-poly(ethylene glycol) comb-like copolymers in cement suspensions. Iran Polym. J. 2014, 23, 663−669.
doi: 10.1007/s13726-014-0259-2
Shu, X.; Ran, Q.; Liu, J.; Zhao, H.; Zhang, Q.; Wang, X.; Yang, Y.; Liu, J. Tailoring the solution conformation of polycarboxylate superplasticizer toward the improvement of dispersing performance in cement paste. Constr. Build. Mater 2016, 116, 289−298.
doi: 10.1016/j.conbuildmat.2016.04.127
Flatt, J. F.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E. Conformation of adsorbed comb copolymer dispersants. Langmuir 2008, 25, 845−855.
doi: 10.1021/la801410e
Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J; Wu, S.; Shen, J. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions. J. Colloid Interface Sci. 2009, 336, 624−633.
doi: 10.1016/j.jcis.2009.04.057
Winnefeld, F.; Becker, S.; Pakusch, J.; Götz, T. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem. Concr. Compos. 2007, 29, 251−262.
doi: 10.1016/j.cemconcomp.2006.12.006
Kirby, G. H.; Lewis, J. A. Comb polymer architecture effects on the rheological property evolution of concentrated cement suspensions. J. Am. Ceram. Soc. 2004, 87, 1643−1652.
doi: 10.1111/j.1551-2916.2004.01643.x
Sappidi, P.; Muralidharan, S. S.; Natarajan, U. Conformations and hydration structure of hydrophobic polyelectrolyte atactic poly(ethac rylic acid) in dilute aqueous solution as a function of neutralization. Mol. Simul. 2014, 40, 295−305.
doi: 10.1080/08927022.2013.803551
Tong, K. F.; Song, X. F.; Sun, S. Y.; Xu, Y. X.; Yu, J. G. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions. Mol. Phys. 2014, 112, 2176−2183.
doi: 10.1080/00268976.2014.893036
Zidar, J.; Lim, G. S.; Cheong, D. W.; Klähn, M. Protein-like dynamics of polycarbonate polymers in water. J. Phys. Chem. B 2014, 119, 316−329.
Sulatha, M. S.; Natarajan, U. Molecular dynamics simulations of PAA-PMA polyelectrolyte copolymers in dilute aqueous solution: chain conformations and hydration properties. Ind. Eng. Chem. Res. 2012, 51, 10833−10839.
doi: 10.1021/ie301244n
Sulatha, M. S.; Natarajan, U. Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. Ind. Eng. Chem. Res. 2011, 50, 11785−11796.
doi: 10.1021/ie2014845
Maskey, S.; Pierce, F.; Perahia, D.; Grest, G. S. Conformational study of a single molecule of poly para phenylene ethynylenes in dilute solutions. J. Chem. Phys. 2011, 134, 244906−244914.
doi: 10.1063/1.3604820
Tribello, G. A.; Liew, C. C.; Parrinello, M. Binding of calcium and carbonate to polyacrylates. J. Phys. Chem. B 2009, 113, 7081−7085.
doi: 10.1021/jp900283d
Ju, S. P.; Lee, W. J.; Huang, C. I.; Cheng, W. Z.; Chung, Y. T. Structure and dynamics of water surrounding the poly(methacrylic acid): a molecular dynamics study. J. Chem. Phys. 2007, 126, 224901−224912.
doi: 10.1063/1.2743963
Molnar, F.; Rieger, J. “Like-charge attraction” between anionic polyelectrolytes: molecular dynamics simulations. Langmuir 2005, 21, 786−789.
doi: 10.1021/la048057c
Hehmeyer, O. J.; Arya, G.; Panagiotopoulos, A. Z.; Szleifer, I. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. J. Chem. Phys. 2007, 126, 244902.
doi: 10.1063/1.2747600
Luque-Caballero, G.; Martín-Molina, A.; Quesada-Pérez, M. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: a Monte Carlo simulation study. J. Chem. Phys. 2014, 140, 174701.
doi: 10.1063/1.4872263
Yu, S.; Larson, R. G. Monte-Carlo simulations of PAMAM dendrimer-DNA interactions. Soft Matter 2014, 10, 5325−5336.
doi: 10.1039/C4SM00452C
Turesson, M.; Labbez, C.; Nonat, A. Calcium mediated polyelectrolyte adsorption on like-charged surfaces. Langmuir 2011, 27, 13572−13581.
doi: 10.1021/la2030846
Chremos, A.; Douglas, J. F. Counter-ion distribution around flexible polyelectrolytes having different molecular architecture. Soft Matter 2016, 12, 2932−2941.
doi: 10.1039/C5SM02873F
Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. Soft Matter 2016, 12, 4611−4620.
doi: 10.1039/C6SM00414H
Ghelichi, M.; Eikerling, M. H. Conformational properties of comb-like polyelectrolytes: a coarse-grained MD study. J. Phys. Chem. B 2016, 120, 2859−2867.
doi: 10.1021/acs.jpcb.6b00568
Turesson, M.; Nonat, A.; Labbez, C. Stability of negatively charged platelets in calcium-rich anionic copolymer solutions. Langmuir 2014, 30, 6713−6720.
doi: 10.1021/la501228w
Liu, Z.; Shang, Y.; Feng, J.; Peng, C.; Liu, H.; Hu, Y. Effect of hydrophilicity or hydrophobicity of polyelectrolyte on the interaction between polyelectrolyte and surfactants: molecular dynamics simulations. J. Phys. Chem. B 2012, 116, 5516−5526.
doi: 10.1021/jp212089d
Spaeth, J. R.; Kevrekidis, I. G.; Panagiotopoulos, A. Z. A comparison of implicit-and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J. Chem. Phys. 2011, 134, 164902.
doi: 10.1063/1.3580293
Reddy, G.; Yethiraj, A. Solvent effects in polyelectrolyte adsorption: computer simulations with explicit and implicit solvent. J. Chem. Phys. 2010, 132, 074903.
doi: 10.1063/1.3319782
Košovan, P.; Limpouchová, Z.; Procházka, K. Conformational behavior of comb-like polyelectrolytes in selective solvent: computer simulation study. J. Phys. Chem. B 2007, 111, 8605−8611.
doi: 10.1021/jp072894g
Hsiao, P. Y.; Luijten, E. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. Phys. Rev. Lett. 2006, 97, 148301−148305.
doi: 10.1103/PhysRevLett.97.148301
Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Molecular dynamics simulations of polyelectrolyte solutions: nonuniform stretching of chains and scaling behavior. Macromolecules 2003, 36, 3386−3398.
doi: 10.1021/ma025995f
Wynveen, A.; Likos, C. N. Interactions between planar polyelectrolyte brushes: effects of stiffness and salt. Soft Matter 2010, 6, 163−171.
doi: 10.1039/B919808C
Baratlo, M.; Fazli, H. Brushes of flexible, semiflexible, and rodlike diblock polyampholytes: molecular dynamics simulation and scaling analysis. Phys. Rev. E 2010, 81, 011801.
Baratlo, M.; Fazli, H. Molecular dynamics simulation of semiflexible polyampholyte brushes—the effect of charged monomers sequence. Eur. Phys. J. 2009, 29, 131−138.
Csajka, F. S.; Netz, R. R.; Seidel, C.; Joanny, J. F. Collapse of polyelectrolyte brushes: scaling theory and simulations. Eur. Phys. J. 2001, 4, 505−513.
Seidel, C. Strongly stretched polyelectrolyte brushes. Macromolecules 2003, 36, 2536−2543.
doi: 10.1021/ma021428g
Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Nanoscale brushes: how to build a smart surface coating. Phys. Rev. Lett. 2009, 102, 115702.
doi: 10.1103/PhysRevLett.102.115702
Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Surface instabilities of monodisperse and densely grafted polymer brushes. Macromolecules 2008, 41, 5070−5072.
doi: 10.1021/ma800163a
Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis. Langmuir 2009, 25, 13158−13168.
doi: 10.1021/la901839j
Guptha, V. S.; Hsiao, P. Y. Polyelectrolyte brushes in monovalent and multivalent salt solutions. Polymer 2014, 55, 2900−2912.
doi: 10.1016/j.polymer.2014.04.035
Giraudeau, C.; D'Espinose De Lacaillerie, J. B.; Souguir, Z.; Nonat, Z.; Flatt, R. J. Surface and intercalation chemistry of polycarboxylate copolymers in cementitious systems. J. Am. Ceram. Soc. 2009, 92, 2471−2488.
doi: 10.1111/j.1551-2916.2009.03413.x
Lee, H.; Venable, R. M.; MacKerell Jr, A. D.; Pastor, R. W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 2008, 95, 1590−1599.
doi: 10.1529/biophysj.108.133025
Gay, C.; Raphael, E. Comb-like polymers inside nanoscale pores. Adv. Colloid Inter. Sci. 2001, 94, 229−236.
doi: 10.1016/S0001-8686(01)00062-8
Pedersen, J. S.; Sommer, C. Temperature dependence of the virial coefficients and the chi parameter in semi-dilute solutions of PEG. In Scattering methods and the properties of polymer materials. Berlin, Heidelberg, 2005, pp. 70−78.
Diehl, H. W.; Eisenriegler, E. Universal shape ratios for open and closed random walks: exact results for all d. J. Phys. A: Math. Gen. 1989, 22, L87.
doi: 10.1088/0305-4470/22/3/005
Wang, Y.; Teraoka, I.; Hansen, F. Y.; Peters, G. H.; Hassager, O. Mean span dimensions of ideal polymer chains containing branches and rings. Macromolecules 2010, 44, 403−412.
Hsu, H. P.; Paul, W.; Binder, K. Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymer chains. Macromolecules 2010, 43, 3094−3102.
doi: 10.1021/ma902715e
Dobrynin, A. V. Electrostatic persistence length of semiflexible and flexible polyelectrolytes. Macromolecules 2005, 38, 9304−9314.
doi: 10.1021/ma051353r
Dorfman, K. D.; King, S. B.; Olson, D. W.; Thomas, J. D. P.; Tree, D. R. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis and DNA stretching. Chem. Rev. 2012, 113, 2584−2667.
doi: 10.1021/cr3002142
Paturej, J.; Sheiko, S. S.; Panyukov, S.; Rubinstein, M. Molecular structure of bottlebrush polymers in melts. Sci. Adv. 2016, 2, 1601478−1601480.
doi: 10.1126/sciadv.1601478
Birshtein, T. M.; Borisov, O. V.; Zhulina, Y. B.; Khokhlov, A. R; Yurasova, T. A. Conformations of comb-like macromolecules. Polym. Sci. 1987, 29, 1293−1300.
Feuz, L.; Leermakers, F. A. M.; Textor, M.; Borisov, O. Bending rigidity and induced persistence length of molecular bottle brushes: a self-consistent-field theory. Macromolecules 2005, 38, 8891−8901.
doi: 10.1021/ma050871z
Qing Mei Guan , Dong Xia Zhao , Zhong Zhi Yang . An investigation of crambin and BPTI based on ABEEM/MM model. Chinese Chemical Letters, 2007, 18(12): 1554-1556. doi: 10.1016/j.cclet.2007.07.029
Chaozheng He , Haotian Wang , Ling Fu , Jinrong Huo , Zhiheng Zheng , Chenxu Zhao , Meng An . Principles for designing CO2 adsorption catalyst: Serving thermal conductivity as the determinant for reactivity. Chinese Chemical Letters, 2022, 33(2): 990-994. doi: 10.1016/j.cclet.2021.09.049
XU Pei-Jun , TANG Yuan-Yuan , ZHANG Jing , ZHANG Zhi-Bo , WANG Kun , SHAO Ying , SHEN Hu-Jun , MAO Ying-Chen . Molecular Dynamics Simulation of Organic Solvents Based on the Coarse-Grained Model. Acta Physico-Chimica Sinica, 2011, 27(08): 1839-1846. doi: 10.3866/PKU.WHXB20110811
CHEN Fang , LIU Yuan-Yuan , WANG Jian-Long , Su Ning-Ning , LI Li-Jie , CHEN Hong-Chun . nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2017, 33(6): 1140-1148. doi: 10.3866/PKU.WHXB201702242
CAO Jian , CAO Zan-Xia , ZHAO Li-Ling , WANG Ji-Hua . Effect of α-Synuclein (1-17) Peptide for Cu2+-Bound and Metal-Free Forms by Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2012, 28(02): 479-488. doi: 10.3866/PKU.WHXB201111231
REN Chunxing , LI Xiaoxia , GUO Li . Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2018, 34(10): 1151-1162. doi: 10.3866/PKU.WHXB201802261
Xiang-Cong WANG , Mao-Cheng YANG , Mo-Xuan ZHANG , Yin-Jie HU , Zhong-Hua WANG , Fan-Hong WU . 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations of 3-Phenylsulfonylaminopyridine Derivatives as Novel PI3Kα Inhibitors. Chinese Journal of Structural Chemistry, 2021, 40(12): 1567-1585. doi: 10.14102/j.cnki.0254-5861.2011-3216
ZHANG Rong , CHEN Wen-Rong , ZENG Wei , WU Wen-Juan . Studies on the Structures and Hydrogen-bonding Interactions in Aqueous Glycine Solutions Using All-atom Molecular Dynamics Simulations and NMR Spectroscopy. Chinese Journal of Structural Chemistry, 2014, 33(1): 49-56.
SUN Huai . Molecular Simulations in Materials Science. Acta Physico-Chimica Sinica, 2018, 34(10): 1095-1096. doi: 10.3866/PKU.WHXB201803291
Li Ming DING , Yun Qing LIN , Xiao Guang SUN , Cheng Zong YANG , Fo Song WANG . STUDY ON A NEW COMB POLYMER ELECTROLYTE (Ⅱ). Chinese Chemical Letters, 1995, 6(4): 327-328.
Li Ming DING , Yun Qing LIN , Xiao Guang SUN , De Zhu MA , Cheng Zong YANG . STUDY ON A NEW COMB POLYMER ELECTROLYTE (Ⅲ). Chinese Chemical Letters, 1995, 6(5): 419-420.
YOSHII Noriyuki , KOMORI Mika , KAWADA Shinji , TAKABAYASHI Hiroaki , FUJIMOTO Kazushi , OKAZAKI Susumu . Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations. Acta Physico-Chimica Sinica, 2018, 34(10): 1163-1170. doi: 10.3866/PKU.WHXB201802271
Chi Shuai-Jie , Chen Liang , Liu Jian-Gang , Yu Xin-Hong , Han Yan-Chun . Influence of bifurcation position and length of side chains on the structure of isoindigo-based conjugated polymer thin films. Chinese Chemical Letters, 2017, 28(2): 333-337. doi: 10.1016/j.cclet.2016.09.005
Li-Jun Liu , Wen-Duo Chen , Ji-Zhong Chen , Li-Jia An . Tumbling dynamics of individual absorbed polymer chains in shear flow. Chinese Chemical Letters, 2014, 25(05): 670-672. doi: 10.1016/j.cclet.2014.03.042
Li Desheng , Yang Jingfa , Zhao Jiang . Positioning a fluorescent probe at the core of a glassy star polymer for detection of local dynamics. Chinese Chemical Letters, 2018, 29(3): 374-380. doi: 10.1016/j.cclet.2017.07.010
Zhen LIANG , Wen-Li YAN , Hong-Mei LI , Ying LI , Rong ZHANG . Studies on the Molecular Mechanism between HDAC8 and Inhibitory in Different Bioactivities by Molecular Docking and MD Simulations. Chinese Journal of Structural Chemistry, 2021, 40(10): 1298-1308. doi: 10.14102/j.cnki.0254–5861.2011–3126
Li Ming DING , Zhong SHI , Hua Fang ZHOU , Shao Jun DONG . Physical Diffusion and Electron-transfer Dynamics of Electroactive Solutes in Polymer Electrolytes Ⅲ. Effect of the Polymer Solvents. Chinese Chemical Letters, 1997, 8(10): 901-904.
LU Teng , ZHOU Yongxiang , GUO Hongxia . Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study. Acta Physico-Chimica Sinica, 2018, 34(10): 1144-1150. doi: 10.3866/PKU.WHXB201802122