Citation: Jian-Hua Chen, Li-Qun Lu, Hong-Xia Zhao, Yong Yang, Xin Shu, Qian-Ping Ran. Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 371-381. doi: 10.1007/s10118-020-2350-9 shu

Conformational Properties of Comb-shaped Polyelectrolytes with Negatively Charged Backbone and Neutral Side Chains Studied by a Generic Coarse-grained Bead-and-Spring Model

  • Corresponding author: Yong Yang,
  • Received Date: 1 August 2019
    Revised Date: 30 August 2019
    Available Online: 25 October 2019

  • A generic coarse-grained bead-and-spring model, mapped onto comb-shaped polycarboxylate-based (PCE) superplasticizers, is developed and studied by Langevin molecular dynamics simulations with implicit solvent and explicit counterions. The agreement on the radius of gyration of the PCEs with experiments shows that our model can be useful in studying the equilibrium sizes of PCEs in solution. The effects of ionic strength, side-chain number, and side-chain length on the conformational behavior of PCEs in solution are explored. Single-chain equilibrium properties, including the radius of gyration, end-to-end distance and persistence length of the polymer backbone, shape-asphericity parameter, and the mean span dimension, are determined. It is found that with the increase of ionic strength, the equilibrium sizes of the polymers decrease only slightly, and a linear dependence of the persistence length of backbone on the Debye screening length is found, in good agreement with the theory developed by Dobrynin. Increasing side-chain numbers and/or side-chain lengths increases not only the equilibrium sizes (radius of gyration and mean span) of the polymer as a whole, but also the persistence length of the backbone due to excluded volume interactions.
  • 加载中
    1. [1]

      Voycheck, C. L.; Tan, J. S.; Hara, M. Polyelectrolytes: science and technology. Marcel Dekker, Inc., New York, 1993, p. 250.

    2. [2]

      Holm, C.; Joanny, J. F.; Kremer, K.; Netz, R. R.; Reineker, P.; Seidel, C.; Vilgis, T. A.; Winkler, R. G. Polyelectrolyte theory. in Polyelectrolytes with defined molecular architecture II. Berlin, Heidelberg, 2004, p. 67.

    3. [3]

      Chremos, A.; Douglas, J. F. Influence of higher valent ions on flexible polyelectrolyte stiffness and counter-ion distribution. J. Chem. Phys. 2016, 144, 164904−164913.  doi: 10.1063/1.4947221

    4. [4]

      Stevens, M. J.; Mcintosh, D.; Saleh, O. Simulations of stretching a strong, flexible polyelectrolyte. Macromolecules 2012, 45, 5757−5765.  doi: 10.1021/ma300899x

    5. [5]

      Toan, N. M.; Thirumalai, D. On the origin of the unusual behavior in the stretching of single-stranded DNA. J. Chem. Phys. 2012, 136, 235103−235108.  doi: 10.1063/1.4729371

    6. [6]

      Elder, R. M.; Jayaraman, A. Coarse-grained simulation studies of effects of polycation architecture on structure of the polycation and polycation-polyanion complexes. Macromolecules 2012, 45, 8083−8096.  doi: 10.1021/ma3011944

    7. [7]

      Bayramoglu, B.; Faller, R. Coarse-grained modeling of polystyrene in various environments by iterative Boltzmann inversion. Macromolecules 2012, 45, 9205−9249.  doi: 10.1021/ma301280b

    8. [8]

      Carrillo, J. M. Y.; Dobrynin, A. V. Polyelectrolytes in salt solutions: molecular dynamics simulations. Macromolecules 2011, 44, 5798−5816.  doi: 10.1021/ma2007943

    9. [9]

      Carrillo, J. M. Y.; Dobrynin, A. V. Detailed molecular dynamics simulations of a model NaPSS in water. J. Phys. Chem. B 2010, 114, 9391−9399.  doi: 10.1021/jp101978k

    10. [10]

      Saleh, O.; Mcintosh, D.; Pincus, P.; Ribeck, N. Nonlinear low-force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 2009, 102, 068301.  doi: 10.1103/PhysRevLett.102.068301

    11. [11]

      Chang, R.; Yethiraj, A. Dilute solutions of strongly charged flexible polyelectrolytes in poor solvents: molecular dynamics simulations with explicit solvent. Macromolecules 2006, 39, 821−828.  doi: 10.1021/ma051095y

    12. [12]

      Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Counterion-correlation-induced attraction and necklace formation in polyelectrolyte solutions: theory and simulations. Macromolecules 2006, 39, 1920−1938.  doi: 10.1021/ma052086s

    13. [13]

      Dobrynin, A. V.; Rubinstein, M. Theory of polyelectrolytes in solutions and at surfaces. Prog. Polym. Sci. 2005, 30, 1049−1118.  doi: 10.1016/j.progpolymsci.2005.07.006

    14. [14]

      Limbach, H. J.; Holm, C. Single-chain properties of polyelectrolytes in poor solvent. J. Phys. Chem. B 2003, 107, 8041−8055.  doi: 10.1021/jp027606p

    15. [15]

      Micka, U.; Holm, C.; Kremer, K. Strongly charged, flexible polyelectrolytes in poor solvents: molecular dynamics simulations. Langmuir 1999, 15, 4033−4044.  doi: 10.1021/la981191a

    16. [16]

      Stevens, M. J.; Kremer, K. The nature of flexible linear polyelectrolytes in salt free solution: a molecular dynamics study. J. Chem. Phys. 1995, 103, 1669.  doi: 10.1063/1.470698

    17. [17]

      Dobrynin, A. V. Theory and simulations of charged polymers: from solution properties to polymeric nanomaterials. Curr. Opin. Colloid In. 2008, 13, 376−388.  doi: 10.1016/j.cocis.2008.03.006

    18. [18]

      Khokhlov, A. R.; Khalatur, P. G. Solution properties of charged hydrophobic/hydrophilic copolymers. Curr. Opin. Colloid In. 2005, 10, 22−29.  doi: 10.1016/j.cocis.2005.04.003

    19. [19]

      Burak, Y.; Ariel, G.; Andelman, D. Onset of DNA aggregation in presence of monovalent and multivalent counterions. Biophys. J. 2003, 85, 2100−2110.  doi: 10.1016/S0006-3495(03)74638-4

    20. [20]

      Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 2015, 116, 786−808.

    21. [21]

      Zhang, Y.; Lu, H.; Lin, Y.; Cheng, J. Water-soluble polypeptides with elongated, charged side chains adopt ultrastable helical conformations. Macromolecules 2011, 44, 6641−6644.  doi: 10.1021/ma201678r

    22. [22]

      Wang, Y.; Zheng, M.; Meng, F.; Zhang, J.; Peng, R.; Zhong, Z. Branched polyethylenimine derivatives with reductively cleavable periphery for safe and efficient in vitro gene transfer. Biomacromolecules 2011, 12, 1032−1040.  doi: 10.1021/bm101364f

    23. [23]

      Lu, H.; Wang, J.; Bai, Y.; Lang, J. W.; Liu, S.; Lin, Y.; Cheng, J. Ionic polypeptides with unusual helical stability. Nat. Commun. 2011, 2, 206.  doi: 10.1038/ncomms1209

    24. [24]

      Alonso, M. M.; Palacios, M.; Puertas, F. Compatibility between polycarboxylate-based admixtures and blended-cement pastes. Cem. Concr. Compos. 2013, 35, 151−162.  doi: 10.1016/j.cemconcomp.2012.08.020

    25. [25]

      Malferrari, D.; Fermani, S.; Galletti, P.; Goisis, M.; Tagliavini, E.; Falini, G. Shaping calcite crystals by means of comb polyelectrolytes having neutral hydrophilic teeth. Langmuir 2013, 29, 1938−1947.  doi: 10.1021/la304618f

    26. [26]

      Reese, J.; Plank, J. Adsorption of polyelectrolytes on calcium carbonate-which thermodynamic parameters are driving this process. J. Am. Ceram. Soc. 2011, 94, 3515−3522.  doi: 10.1111/j.1551-2916.2011.04682.x

    27. [27]

      Yamada, K.; Takahashi, T.; Hanehara, S.; Matsuhisa, M. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem. Concr. Res. 2000, 30, 197−207.  doi: 10.1016/S0008-8846(99)00230-6

    28. [28]

      Ran, Q.; Qiao, M.; Liu, J. Influence of Ca2+ on the performance of poly(acrylic acid)-g-poly(ethylene glycol) comb-like copolymers in cement suspensions. Iran Polym. J. 2014, 23, 663−669.  doi: 10.1007/s13726-014-0259-2

    29. [29]

      Shu, X.; Ran, Q.; Liu, J.; Zhao, H.; Zhang, Q.; Wang, X.; Yang, Y.; Liu, J. Tailoring the solution conformation of polycarboxylate superplasticizer toward the improvement of dispersing performance in cement paste. Constr. Build. Mater 2016, 116, 289−298.  doi: 10.1016/j.conbuildmat.2016.04.127

    30. [30]

      Flatt, J. F.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E. Conformation of adsorbed comb copolymer dispersants. Langmuir 2008, 25, 845−855.  doi: 10.1021/la801410e

    31. [31]

      Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J; Wu, S.; Shen, J. Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions. J. Colloid Interface Sci. 2009, 336, 624−633.  doi: 10.1016/j.jcis.2009.04.057

    32. [32]

      Winnefeld, F.; Becker, S.; Pakusch, J.; Götz, T. Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem. Concr. Compos. 2007, 29, 251−262.  doi: 10.1016/j.cemconcomp.2006.12.006

    33. [33]

      Kirby, G. H.; Lewis, J. A. Comb polymer architecture effects on the rheological property evolution of concentrated cement suspensions. J. Am. Ceram. Soc. 2004, 87, 1643−1652.  doi: 10.1111/j.1551-2916.2004.01643.x

    34. [34]

      Sappidi, P.; Muralidharan, S. S.; Natarajan, U. Conformations and hydration structure of hydrophobic polyelectrolyte atactic poly(ethac rylic acid) in dilute aqueous solution as a function of neutralization. Mol. Simul. 2014, 40, 295−305.  doi: 10.1080/08927022.2013.803551

    35. [35]

      Tong, K. F.; Song, X. F.; Sun, S. Y.; Xu, Y. X.; Yu, J. G. Molecular dynamics study of linear and comb-like polyelectrolytes in aqueous solution: effect of Ca2+ ions. Mol. Phys. 2014, 112, 2176−2183.  doi: 10.1080/00268976.2014.893036

    36. [36]

      Zidar, J.; Lim, G. S.; Cheong, D. W.; Klähn, M. Protein-like dynamics of polycarbonate polymers in water. J. Phys. Chem. B 2014, 119, 316−329.

    37. [37]

      Sulatha, M. S.; Natarajan, U. Molecular dynamics simulations of PAA-PMA polyelectrolyte copolymers in dilute aqueous solution: chain conformations and hydration properties. Ind. Eng. Chem. Res. 2012, 51, 10833−10839.  doi: 10.1021/ie301244n

    38. [38]

      Sulatha, M. S.; Natarajan, U. Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations. Ind. Eng. Chem. Res. 2011, 50, 11785−11796.  doi: 10.1021/ie2014845

    39. [39]

      Maskey, S.; Pierce, F.; Perahia, D.; Grest, G. S. Conformational study of a single molecule of poly para phenylene ethynylenes in dilute solutions. J. Chem. Phys. 2011, 134, 244906−244914.  doi: 10.1063/1.3604820

    40. [40]

      Tribello, G. A.; Liew, C. C.; Parrinello, M. Binding of calcium and carbonate to polyacrylates. J. Phys. Chem. B 2009, 113, 7081−7085.  doi: 10.1021/jp900283d

    41. [41]

      Ju, S. P.; Lee, W. J.; Huang, C. I.; Cheng, W. Z.; Chung, Y. T. Structure and dynamics of water surrounding the poly(methacrylic acid): a molecular dynamics study. J. Chem. Phys. 2007, 126, 224901−224912.  doi: 10.1063/1.2743963

    42. [42]

      Molnar, F.; Rieger, J. “Like-charge attraction” between anionic polyelectrolytes: molecular dynamics simulations. Langmuir 2005, 21, 786−789.  doi: 10.1021/la048057c

    43. [43]

      Hehmeyer, O. J.; Arya, G.; Panagiotopoulos, A. Z.; Szleifer, I. Monte Carlo simulation and molecular theory of tethered polyelectrolytes. J. Chem. Phys. 2007, 126, 244902.  doi: 10.1063/1.2747600

    44. [44]

      Luque-Caballero, G.; Martín-Molina, A.; Quesada-Pérez, M. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: a Monte Carlo simulation study. J. Chem. Phys. 2014, 140, 174701.  doi: 10.1063/1.4872263

    45. [45]

      Yu, S.; Larson, R. G. Monte-Carlo simulations of PAMAM dendrimer-DNA interactions. Soft Matter 2014, 10, 5325−5336.  doi: 10.1039/C4SM00452C

    46. [46]

      Turesson, M.; Labbez, C.; Nonat, A. Calcium mediated polyelectrolyte adsorption on like-charged surfaces. Langmuir 2011, 27, 13572−13581.  doi: 10.1021/la2030846

    47. [47]

      Chremos, A.; Douglas, J. F. Counter-ion distribution around flexible polyelectrolytes having different molecular architecture. Soft Matter 2016, 12, 2932−2941.  doi: 10.1039/C5SM02873F

    48. [48]

      Ghelichi, M.; Qazvini, N. T. Self-organization of hydrophobic-capped triblock copolymers with a polyelectrolyte midblock: a coarse-grained molecular dynamics simulation study. Soft Matter 2016, 12, 4611−4620.  doi: 10.1039/C6SM00414H

    49. [49]

      Ghelichi, M.; Eikerling, M. H. Conformational properties of comb-like polyelectrolytes: a coarse-grained MD study. J. Phys. Chem. B 2016, 120, 2859−2867.  doi: 10.1021/acs.jpcb.6b00568

    50. [50]

      Turesson, M.; Nonat, A.; Labbez, C. Stability of negatively charged platelets in calcium-rich anionic copolymer solutions. Langmuir 2014, 30, 6713−6720.  doi: 10.1021/la501228w

    51. [51]

      Liu, Z.; Shang, Y.; Feng, J.; Peng, C.; Liu, H.; Hu, Y. Effect of hydrophilicity or hydrophobicity of polyelectrolyte on the interaction between polyelectrolyte and surfactants: molecular dynamics simulations. J. Phys. Chem. B 2012, 116, 5516−5526.  doi: 10.1021/jp212089d

    52. [52]

      Spaeth, J. R.; Kevrekidis, I. G.; Panagiotopoulos, A. Z. A comparison of implicit-and explicit-solvent simulations of self-assembly in block copolymer and solute systems. J. Chem. Phys. 2011, 134, 164902.  doi: 10.1063/1.3580293

    53. [53]

      Reddy, G.; Yethiraj, A. Solvent effects in polyelectrolyte adsorption: computer simulations with explicit and implicit solvent. J. Chem. Phys. 2010, 132, 074903.  doi: 10.1063/1.3319782

    54. [54]

      Košovan, P.; Limpouchová, Z.; Procházka, K. Conformational behavior of comb-like polyelectrolytes in selective solvent: computer simulation study. J. Phys. Chem. B 2007, 111, 8605−8611.  doi: 10.1021/jp072894g

    55. [55]

      Hsiao, P. Y.; Luijten, E. Salt-induced collapse and reexpansion of highly charged flexible polyelectrolytes. Phys. Rev. Lett. 2006, 97, 148301−148305.  doi: 10.1103/PhysRevLett.97.148301

    56. [56]

      Liao, Q.; Dobrynin, A. V.; Rubinstein, M. Molecular dynamics simulations of polyelectrolyte solutions: nonuniform stretching of chains and scaling behavior. Macromolecules 2003, 36, 3386−3398.  doi: 10.1021/ma025995f

    57. [57]

      Wynveen, A.; Likos, C. N. Interactions between planar polyelectrolyte brushes: effects of stiffness and salt. Soft Matter 2010, 6, 163−171.  doi: 10.1039/B919808C

    58. [58]

      Baratlo, M.; Fazli, H. Brushes of flexible, semiflexible, and rodlike diblock polyampholytes: molecular dynamics simulation and scaling analysis. Phys. Rev. E 2010, 81, 011801.

    59. [59]

      Baratlo, M.; Fazli, H. Molecular dynamics simulation of semiflexible polyampholyte brushes—the effect of charged monomers sequence. Eur. Phys. J. 2009, 29, 131−138.

    60. [60]

      Csajka, F. S.; Netz, R. R.; Seidel, C.; Joanny, J. F. Collapse of polyelectrolyte brushes: scaling theory and simulations. Eur. Phys. J. 2001, 4, 505−513.

    61. [61]

      Seidel, C. Strongly stretched polyelectrolyte brushes. Macromolecules 2003, 36, 2536−2543.  doi: 10.1021/ma021428g

    62. [62]

      Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Nanoscale brushes: how to build a smart surface coating. Phys. Rev. Lett. 2009, 102, 115702.  doi: 10.1103/PhysRevLett.102.115702

    63. [63]

      Merlitz, H.; He, G. L.; Wu, C. X.; Sommer, J. U. Surface instabilities of monodisperse and densely grafted polymer brushes. Macromolecules 2008, 41, 5070−5072.  doi: 10.1021/ma800163a

    64. [64]

      Carrillo, J. M. Y.; Dobrynin, A. V. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis. Langmuir 2009, 25, 13158−13168.  doi: 10.1021/la901839j

    65. [65]

      Guptha, V. S.; Hsiao, P. Y. Polyelectrolyte brushes in monovalent and multivalent salt solutions. Polymer 2014, 55, 2900−2912.  doi: 10.1016/j.polymer.2014.04.035

    66. [66]

      Giraudeau, C.; D'Espinose De Lacaillerie, J. B.; Souguir, Z.; Nonat, Z.; Flatt, R. J. Surface and intercalation chemistry of polycarboxylate copolymers in cementitious systems. J. Am. Ceram. Soc. 2009, 92, 2471−2488.  doi: 10.1111/j.1551-2916.2009.03413.x

    67. [67]

      Lee, H.; Venable, R. M.; MacKerell Jr, A. D.; Pastor, R. W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 2008, 95, 1590−1599.  doi: 10.1529/biophysj.108.133025

    68. [68]

      Gay, C.; Raphael, E. Comb-like polymers inside nanoscale pores. Adv. Colloid Inter. Sci. 2001, 94, 229−236.  doi: 10.1016/S0001-8686(01)00062-8

    69. [69]

      Pedersen, J. S.; Sommer, C. Temperature dependence of the virial coefficients and the chi parameter in semi-dilute solutions of PEG. In Scattering methods and the properties of polymer materials. Berlin, Heidelberg, 2005, pp. 70−78.

    70. [70]

      Diehl, H. W.; Eisenriegler, E. Universal shape ratios for open and closed random walks: exact results for all d. J. Phys. A: Math. Gen. 1989, 22, L87.  doi: 10.1088/0305-4470/22/3/005

    71. [71]

      Wang, Y.; Teraoka, I.; Hansen, F. Y.; Peters, G. H.; Hassager, O. Mean span dimensions of ideal polymer chains containing branches and rings. Macromolecules 2010, 44, 403−412.

    72. [72]

      Hsu, H. P.; Paul, W.; Binder, K. Standard definitions of persistence length do not describe the local “intrinsic” stiffness of real polymer chains. Macromolecules 2010, 43, 3094−3102.  doi: 10.1021/ma902715e

    73. [73]

      Dobrynin, A. V. Electrostatic persistence length of semiflexible and flexible polyelectrolytes. Macromolecules 2005, 38, 9304−9314.  doi: 10.1021/ma051353r

    74. [74]

      Dorfman, K. D.; King, S. B.; Olson, D. W.; Thomas, J. D. P.; Tree, D. R. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis and DNA stretching. Chem. Rev. 2012, 113, 2584−2667.  doi: 10.1021/cr3002142

    75. [75]

      Paturej, J.; Sheiko, S. S.; Panyukov, S.; Rubinstein, M. Molecular structure of bottlebrush polymers in melts. Sci. Adv. 2016, 2, 1601478−1601480.  doi: 10.1126/sciadv.1601478

    76. [76]

      Birshtein, T. M.; Borisov, O. V.; Zhulina, Y. B.; Khokhlov, A. R; Yurasova, T. A. Conformations of comb-like macromolecules. Polym. Sci. 1987, 29, 1293−1300.

    77. [77]

      Feuz, L.; Leermakers, F. A. M.; Textor, M.; Borisov, O. Bending rigidity and induced persistence length of molecular bottle brushes: a self-consistent-field theory. Macromolecules 2005, 38, 8891−8901.  doi: 10.1021/ma050871z

  • 加载中
    1. [1]

      Qing Mei Guan Dong Xia Zhao Zhong Zhi Yang . An investigation of crambin and BPTI based on ABEEM/MM model. Chinese Chemical Letters, 2007, 18(12): 1554-1556. doi: 10.1016/j.cclet.2007.07.029

    2. [2]

      Chaozheng HeHaotian WangLing FuJinrong HuoZhiheng ZhengChenxu ZhaoMeng An . Principles for designing CO2 adsorption catalyst: Serving thermal conductivity as the determinant for reactivity. Chinese Chemical Letters, 2022, 33(2): 990-994. doi: 10.1016/j.cclet.2021.09.049

    3. [3]

      XU Pei-JunTANG Yuan-YuanZHANG JingZHANG Zhi-BoWANG KunSHAO YingSHEN Hu-JunMAO Ying-Chen . Molecular Dynamics Simulation of Organic Solvents Based on the Coarse-Grained Model. Acta Physico-Chimica Sinica, 2011, 27(08): 1839-1846. doi: 10.3866/PKU.WHXB20110811

    4. [4]

      CHEN Fang LIU Yuan-Yuan WANG Jian-Long Su Ning-Ning LI Li-Jie CHEN Hong-Chun . nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2017, 33(6): 1140-1148. doi: 10.3866/PKU.WHXB201702242

    5. [5]

      CAO JianCAO Zan-XiaZHAO Li-LingWANG Ji-Hua . Effect of α-Synuclein (1-17) Peptide for Cu2+-Bound and Metal-Free Forms by Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2012, 28(02): 479-488. doi: 10.3866/PKU.WHXB201111231

    6. [6]

      REN ChunxingLI XiaoxiaGUO Li . Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations. Acta Physico-Chimica Sinica, 2018, 34(10): 1151-1162. doi: 10.3866/PKU.WHXB201802261

    7. [7]

      Xiang-Cong WANGMao-Cheng YANGMo-Xuan ZHANGYin-Jie HUZhong-Hua WANGFan-Hong WU . 3D-QSAR, Molecular Docking and Molecular Dynamics Simulations of 3-Phenylsulfonylaminopyridine Derivatives as Novel PI3Kα Inhibitors. Chinese Journal of Structural Chemistry, 2021, 40(12): 1567-1585. doi: 10.14102/j.cnki.0254-5861.2011-3216

    8. [8]

      ZHANG RongCHEN Wen-RongZENG WeiWU Wen-Juan . Studies on the Structures and Hydrogen-bonding Interactions in Aqueous Glycine Solutions Using All-atom Molecular Dynamics Simulations and NMR Spectroscopy. Chinese Journal of Structural Chemistry, 2014, 33(1): 49-56.

    9. [9]

      SUN Huai . Molecular Simulations in Materials Science. Acta Physico-Chimica Sinica, 2018, 34(10): 1095-1096. doi: 10.3866/PKU.WHXB201803291

    10. [10]

      Li Ming DING Yun Qing LIN Xiao Guang SUN Cheng Zong YANG Fo Song WANG . STUDY ON A NEW COMB POLYMER ELECTROLYTE (Ⅱ). Chinese Chemical Letters, 1995, 6(4): 327-328.

    11. [11]

      Li Ming DING Yun Qing LIN Xiao Guang SUN De Zhu MA Cheng Zong YANG . STUDY ON A NEW COMB POLYMER ELECTROLYTE (Ⅲ). Chinese Chemical Letters, 1995, 6(5): 419-420.

    12. [12]

      YOSHII NoriyukiKOMORI MikaKAWADA ShinjiTAKABAYASHI HiroakiFUJIMOTO KazushiOKAZAKI Susumu . Free Energy Change of Micelle Formation for Sodium Dodecyl Sulfate from a Dispersed State in Solution to Complete Micelles along Its Aggregation Pathways Evaluated by Chemical Species Model Combined with Molecular Dynamics Calculations. Acta Physico-Chimica Sinica, 2018, 34(10): 1163-1170. doi: 10.3866/PKU.WHXB201802271

    13. [13]

      Chi Shuai-JieChen LiangLiu Jian-GangYu Xin-HongHan Yan-Chun . Influence of bifurcation position and length of side chains on the structure of isoindigo-based conjugated polymer thin films. Chinese Chemical Letters, 2017, 28(2): 333-337. doi: 10.1016/j.cclet.2016.09.005

    14. [14]

      Li-Jun LiuWen-Duo ChenJi-Zhong ChenLi-Jia An . Tumbling dynamics of individual absorbed polymer chains in shear flow. Chinese Chemical Letters, 2014, 25(05): 670-672. doi: 10.1016/j.cclet.2014.03.042

    15. [15]

      Li DeshengYang JingfaZhao Jiang . Positioning a fluorescent probe at the core of a glassy star polymer for detection of local dynamics. Chinese Chemical Letters, 2018, 29(3): 374-380. doi: 10.1016/j.cclet.2017.07.010

    16. [16]

      Zhen LIANGWen-Li YANHong-Mei LIYing LIRong ZHANG . Studies on the Molecular Mechanism between HDAC8 and Inhibitory in Different Bioactivities by Molecular Docking and MD Simulations. Chinese Journal of Structural Chemistry, 2021, 40(10): 1298-1308. doi: 10.14102/j.cnki.0254–5861.2011–3126

    17. [17]

      Li Ming DING Zhong SHI Hua Fang ZHOU Shao Jun DONG . Physical Diffusion and Electron-transfer Dynamics of Electroactive Solutes in Polymer Electrolytes Ⅲ. Effect of the Polymer Solvents. Chinese Chemical Letters, 1997, 8(10): 901-904.

    18. [18]

      LU TengZHOU YongxiangGUO Hongxia . Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study. Acta Physico-Chimica Sinica, 2018, 34(10): 1144-1150. doi: 10.3866/PKU.WHXB201802122

  • PDF Downloads(0)
  • Abstract views(2618)
  • HTML views(84)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint