Citation: Zhen-Yue Yang, Xiao-Fei Tian, Li-Jun Liu, Ji-Zhong Chen. Role of Hydrodynamic Interactions in the Deformation of Star Polymers in Poiseuille Flow[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 363-370. doi: 10.1007/s10118-020-2346-5 shu

Role of Hydrodynamic Interactions in the Deformation of Star Polymers in Poiseuille Flow

  • Corresponding author: Li-Jun Liu, Ji-Zhong Chen,
  • Received Date: 7 July 2019
    Revised Date: 6 August 2019
    Available Online: 24 October 2019

  • Stretching polymer in fluid flow is a vital process for studying and utilizing the physical properties of these molecules, such as DNA linearization in nanofluidic channels. We studied the role of hydrodynamic interactions (HIs) in stretching a free star polymer in Poiseuille flow through a tube using mesoscale hydrodynamic simulations. As increasing the flow strength, star polymers migrate toward the centerline of tube due to HIs, whereas toward the tube wall in the absence of HIs. By analyzing the end monomer distribution and the perturbed flow around the star polymer, we found that the polymer acts like a shield against the flow, leading to additional hydrodynamic drag forces that compress the arm chains in the front of the star center toward the tube axis and lift the arm chains at the back toward the tube wall. The balanced hydrodynamic forces freeze the polymer into a trumpet structure, where the arm chains maintain a steady strongly stretched state at high flow strength. In contrast, the polymer displays remarkably large conformational change when switching off HIs. Our simulation results explained the coupling between HIs and the structure of star polymers in Poiseuille flow.
  • 加载中
    1. [1]

      Larson, R. G. The structure and rheology of complex fluids. New York, Oxford University Press, 1999.

    2. [2]

      Bird, R. B.; Armstrong, R. C.; Hassager, O. Dynamics of polymeric liquids: fluid mechanics. New York, Wiley, 1987.

    3. [3]

      Leduc, P.; Haber, C.; Bao, G.; Wirtz, D. Dynamics of individual flexible polymers in a shear flow. Nature 1999, 399, 564−566.  doi: 10.1038/21148

    4. [4]

      Saha Dalal, I.; Albaugh, A.; Hoda, N.; Larson, R. G. Tumbling and deformation of isolated polymer chains in shearing flow. Macromolecules 2012, 45, 9493−9499.  doi: 10.1021/ma3014349

    5. [5]

      Chen, W.; Chen, J.; Liu, L.; Xu, X.; An, L. Effects of chain stiffness on conformational and dynamical properties of individual ring polymers in shear flow. Macromolecules 2013, 46, 7542−7549.  doi: 10.1021/ma401137c

    6. [6]

      Chen, W.; Chen, J.; An, L. Tumbling and tank-treading dynamics of individual ring polymers in shear flow. Soft Matter 2013, 9, 4312−4318.  doi: 10.1039/c3sm50352f

    7. [7]

      Nikoubashman, A.; Likos, C. N. Branched polymers under shear. Macromolecules 2010, 43, 1610−1620.  doi: 10.1021/ma902212s

    8. [8]

      Singh, S. P.; Gompper, G.; Winkler, R. G. Steady state sedimentation of ultrasoft colloids. J. Chem. Phys. 2018, 148, 084901.  doi: 10.1063/1.5001886

    9. [9]

      Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many-arm star polymers: a molecular dynamics simulation. Macromolecules 1987, 20, 1376−1383.  doi:

    10. [10]

      Vlassopoulos, D.; Fytas, G.; Pakula, T.; Roovers, J. Multiarm star polymers dynamics. J. Phys.: Condens. Matter 2001, 13, R855−R876.  doi: 10.1088/0953-8984/13/41/202

    11. [11]

      Likos, C. N. Effective interactions in soft condensed matter physics. Phys. Rep. 2001, 348, 267−439.  doi: 10.1016/S0370-1573(00)00141-1

    12. [12]

      Xu, X.; Chen, J. Effect of functionality on unentangled star polymers at equilibrium and under shear flow. J. Chem. Phys. 2016, 144, 244905.  doi: 10.1063/1.4955098

    13. [13]

      Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J. T.; An, Z. S.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G. Star polymers. Chem. Rev. 2016, 116, 6743−6836.  doi: 10.1021/acs.chemrev.6b00008

    14. [14]

      Ferry, J. D. Viscoelastic properties of polymers. New York, Wiley, 1980.

    15. [15]

      Zimm, B. H. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 1956, 24, 269−278.  doi: 10.1063/1.1742462

    16. [16]

      Debye, P.; Bueche, A. M. Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 1948, 16, 573−579.  doi: 10.1063/1.1746948

    17. [17]

      De Gennes, P. G. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 1974, 60, 5030−5042.  doi: 10.1063/1.1681018

    18. [18]

      Brochard-Wyart, F. Deformations of one tethered chain in strong flows. Europhys. Lett. 1993, 23, 105−111.  doi: 10.1209/0295-5075/23/2/005

    19. [19]

      Brochard-Wyart, F.; Hervet, H.; Pincus, P. Unwinding of polymer-chains under forces or flows. Europhys. Lett. 1994, 26, 511−516.  doi: 10.1209/0295-5075/26/7/006

    20. [20]

      Ladoux, B.; Doyle, P. S. Stretching tethered DNA chains in shear flow. Europhys. Lett. 2000, 52, 511−517.  doi: 10.1209/epl/i2000-00467-y

    21. [21]

      Brochardwyart, F. Polymer chains under strong flows: stems and flowers. Europhys. Lett. 1995, 30, 387−392.  doi: 10.1209/0295-5075/30/7/002

    22. [22]

      Perkins, T. T.; Smith, D. E.; Larson, R. G.; Chu, S. Stretching of a single tethered polymer in a uniform flow. Science 1995, 268, 83−87.  doi: 10.1126/science.7701345

    23. [23]

      Gratton, Y.; Slater, G. W. Molecular dynamics study of tethered polymers in shear flow. Eur. Phys. J. E 2005, 17, 455−465.  doi: 10.1140/epje/i2005-10020-0

    24. [24]

      Webster, M. A.; Yeomans, J. M. Modeling a tethered polymer in Poiseuille flow. J. Chem. Phys. 2005, 122, 164903.  doi: 10.1063/1.1884105

    25. [25]

      Smith, D. E.; Babcock, H. P.; Chu, S. Single-polymer dynamics in steady shear flow. Science 1999, 283, 1724−1727.  doi: 10.1126/science.283.5408.1724

    26. [26]

      Jendrejack, R. M.; Dimalanta, E. T.; Schwartz, D. C.; Graham, M. D.; de Pablo, J. J. DNA dynamics in a microchannel. Phys. Rev. Lett. 2003, 91, 038102.  doi: 10.1103/PhysRevLett.91.038102

    27. [27]

      Jendrejack, R. M.; Schwartz, D. C.; de Pablo, J. J.; Graham, M. D. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels. J. Chem. Phys. 2004, 120, 2513−2529.  doi: 10.1063/1.1637331

    28. [28]

      Schroeder, C. M.; Teixeira, R. E.; Shaqfeh, E. S. G.; Chu, S. Characteristic periodic motion of polymers in shear flow. Phys. Rev. Lett. 2005, 95, 018301.  doi: 10.1103/PhysRevLett.95.018301

    29. [29]

      Ripoll, M.; Winkler, R. G.; Gompper, G. Star polymers in shear flow. Phys. Rev. Lett. 2006, 96, 188302.  doi: 10.1103/PhysRevLett.96.188302

    30. [30]

      Delgado-Buscalioni, R. Cyclic motion of a grafted polymer under shear flow. Phys. Rev. Lett. 2006, 96, 088303.  doi: 10.1103/PhysRevLett.96.088303

    31. [31]

      Ripoll, M.; Winkler, R. G.; Gompper, G. Hydrodynamic screening of star polymers in shear flow. Eur. Phys. J. E 2007, 23, 349−354.  doi: 10.1140/epje/i2006-10220-0

    32. [32]

      Cannavacciuolo, L.; Winkler, R. G.; Gompper, G. Mesoscale simulations of polymer dynamics in microchannel flows. EPL 2008, 83, 34007.  doi: 10.1209/0295-5075/83/34007

    33. [33]

      Steinhauser, D.; Koester, S.; Pfohl, T. Mobility gradient induces cross-streamline migration of semiflexible polymers. ACS Macro Lett. 2012, 1, 541−545.  doi: 10.1021/mz3000539

    34. [34]

      Chertkov, M.; Kolokolov, I.; Lebedev, V.; Turitsyn, K. Polymer statistics in a random flow with mean shear. J. Fluid Mechanics 2005, 531, 251−260.  doi: 10.1017/S0022112005003939

    35. [35]

      Celani, A.; Puliafito, A.; Turitsyn, K. Polymers in linear shear flow: a numerical study. Europhys. Lett. 2005, 70, 464−470.  doi: 10.1209/epl/i2005-10015-5

    36. [36]

      Winkler, R. G. Semiflexible polymers in shear flow. Phys. Rev. Lett. 2006, 97, 128301.  doi: 10.1103/PhysRevLett.97.128301

    37. [37]

      Rzehak, R.; Kienle, D.; Kawakatsu, T.; Zimmermann, W. Partial draining of a tethered polymer in flow. Europhys. Lett. 1999, 46, 821−826.  doi: 10.1209/epl/i1999-00338-1

    38. [38]

      Sendner, C.; Netz, R. R. Single flexible and semiflexible polymers at high shear: non-monotonic and non-universal stretching response. Eur. Phys. J. E 2009, 30, 75−81.

    39. [39]

      Sing, C. E.; Alexander-Katz, A. Giant nonmonotonic stretching response of a self-associating polymer in shear flow. Phys. Rev. Lett. 2011, 107, 198302.  doi: 10.1103/PhysRevLett.107.198302

    40. [40]

      Liebetreu, M.; Ripoll, M.; Likos, C. N. Trefoil knot hydrodynamic delocalization on sheared ring polymers. ACS Macro Lett. 2018, 7, 447−452.  doi: 10.1021/acsmacrolett.8b00059

    41. [41]

      Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54, 5237−5247.  doi: 10.1063/1.1674820

    42. [42]

      Bishop, M.; Kalos, M. H.; Frisch, H. L. Molecular-dynamics of polymeric systems. J. Chem. Phys. 1979, 70, 1299−1304.  doi: 10.1063/1.437567

    43. [43]

      Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057−5086.  doi: 10.1063/1.458541

    44. [44]

      Li, Z. Q.; Li, Y. W.; Wang, Y. M.; Sun, Z. Y; An, L. J. Transport of star-branched polymers in nanoscale pipe channels simulated with disspative particle dynamics simualtion. Macromolecules 2010, 43, 5896−5903.  doi: 10.1021/ma100734r

    45. [45]

      Malevanets, A.; Kapral, R. Mesoscopic model for solvent dynamics. J. Chem. Phys. 1999, 110, 8605−8613.  doi: 10.1063/1.478857

    46. [46]

      Malevanets, A.; Kapral, R. Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys. 2000, 112, 7260−7269.  doi: 10.1063/1.481289

    47. [47]

      Mussawisade, K.; Ripoll, M.; Winkler, R. G.; Gompper, G. Dynamics of polymers in a particle-based mesoscopic solvent. J. Chem. Phys. 2005, 123, 144905.  doi: 10.1063/1.2041527

    48. [48]

      Ihle, T.; Kroll, D. M. Stochastic rotation dynamics II. Transport coefficients, numerics, and long-time tails. Phys. Rev. E 2003, 67, 066706.

    49. [49]

      Ihle, T.; Kroll, D. M. Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. Phys. Rev. E 2001, 63, 020201(R).  doi: 10.1103/PhysRevE.63.020201

    50. [50]

      Ihle, T.; Kroll, D. M. Stochastic rotation dynamics I. Formalism, Galilean invariance, and Green-Kubo relations. Phys. Rev. E 2003, 67, 066705.

    51. [51]

      Huang, C. C.; Chatterji, A.; Sutmann, G.; Gompper, G.; Winkler, R. G. Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations. J. Comput. Phys. 2010, 229, 168−177.  doi: 10.1016/

    52. [52]

      Padding, J. T.; Louis, A. A. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. Phys. Rev. E 2006, 74, 031402.

    53. [53]

      Nikoubashman, A.; Likos, C. N. Flow-induced polymer translocation through narrow and patterned channels. J. Chem. Phys. 2010, 133, 074901.  doi: 10.1063/1.3466918

    54. [54]

      Nikoubashman, A.; Mahynski, N. A.; Pirayandeh, A. H.; Panagiotopoulos, A. Z. Flow-induced demixing of polymer-colloid mixtures in microfluidic channels. J. Chem. Phys. 2014, 140, 094903.  doi: 10.1063/1.4866762

    55. [55]

      Weiss, L. B.; Nikoubashman, A.; Likos, C. N. Topology-sensitive microfluidic filter for polymers of varying stiffness. ACS Macro Lett. 2017, 6, 1426−1431.  doi: 10.1021/acsmacrolett.7b00768

    56. [56]

      Srivastva, D.; Nikoubashman, A. Flow behavior of chain and star polymers and their mixtures. Polymers 2018, 10, 599.  doi: 10.3390/polym10060599

    57. [57]

      Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Multi-particle collision dynamics: flow around a circular and a square cylinder. Europhys. Lett. 2001, 56, 319−325.  doi: 10.1209/epl/i2001-00522-9

    58. [58]

      Lamura, A.; Gompper, G. Numerical study of the flow around a cylinder using multi-particle collision dynamics. Eur. Phys. J. E 2002, 9, 477−485.  doi: 10.1140/epje/i2002-10107-0

    59. [59]

      Chelakkot, R.; Winkler, R. G.; Gompper, G. Migration of semiflexible polymers in microcapillary flow. Europhys. Lett. 2010, 91, 14001.  doi: 10.1209/0295-5075/91/14001

    60. [60]

      Chelakkot, R.; Winkler, R. G.; Gompper, G. Semiflexible polymer conformation, distribution and migration in microcapillary flows. J. Phys.: Condens. Matter 2011, 23, 184117.  doi: 10.1088/0953-8984/23/18/184117

  • 加载中
    1. [1]

      Li DeshengYang JingfaZhao Jiang . Positioning a fluorescent probe at the core of a glassy star polymer for detection of local dynamics. Chinese Chemical Letters, 2018, 29(3): 374-380. doi: 10.1016/j.cclet.2017.07.010

    2. [2]

      Lin BinxinLu XinlingLi NanXu NingLin Jin-Ming . Effect of Dai-Bai-Jie on the proliferation and migration of the A549 cells. Chinese Chemical Letters, 2020, 31(2): 476-478. doi: 10.1016/j.cclet.2019.07.066

    3. [3]

      Liu DanyeChen DongLiu HuiYang Jun . Inside-Out Migration of Noble Metals in Ag2S Nanoparticles. Acta Physico-Chimica Sinica, 2020, 36(7): 1906069-0. doi: 10.3866/PKU.WHXB201906069

    4. [4]

      Zhang DiFeng FengLiu RupingZhu WenjiaYao Li . Mechanochemistry in cancer cell metastasis. Chinese Chemical Letters, 2019, 30(1): 7-14. doi: 10.1016/j.cclet.2018.06.011

    5. [5]

      XIE HuiLIU ChaoLIU Bin-Wu . Molecular Dynamics Simulation of Gas Mixture Flow in Nanochannel. Acta Physico-Chimica Sinica, 2009, 25(05): 994-998. doi: 10.3866/PKU.WHXB20090404

    6. [6]

      Song ChaoGao DanYuan TianyingChen YongliLiu LipingChen XiaowuJiang Yuyang . Microfluidic three-dimensional biomimetic tumor model for studying breast cancer cell migration and invasion in the presence of interstitial flow. Chinese Chemical Letters, 2019, 30(5): 1038-1042. doi: 10.1016/j.cclet.2019.02.017

    7. [7]

      LI Quan-ZhongZHOU Ming-HuiLIU Ying-FengZHAI Cui-PingZHENG Jian-GuoWANG Yun-Yu . Determination of Migration of 28 Primary Aromatic Amines from Food Contact Materials by Liquid Chromatography -Tandem Mass spectrometry. Chinese Journal of Analytical Chemistry, 2013, 41(1): 25-30. doi: 10.3724/SP.J.1096.2013.20576

    8. [8]

      YAO Shu-JuanSHAO XinCUI Shou-XinZHAO Jian-WeiZHOU Cheng-Gang . Adsorption and Migration of Pt Atoms on γ-Al2O3(001) Surface. Acta Physico-Chimica Sinica, 2011, 27(08): 1816-1822. doi: 10.3866/PKU.WHXB20110814

    9. [9]

      Ying LIU Guo Sheng DING Jun De WANG . Recognition Interactions of Metal-complexing Imprinted Polymer. Chinese Chemical Letters, 2005, 16(6): 797-800.

    10. [10]


    11. [11]

      Li-Jun LiuWen-Duo ChenJi-Zhong ChenLi-Jia An . Tumbling dynamics of individual absorbed polymer chains in shear flow. Chinese Chemical Letters, 2014, 25(05): 670-672. doi: 10.1016/j.cclet.2014.03.042

    12. [12]

      Yu Zhi-WeiGao Shu-XiXu KaiZhang You-XiongPeng JunChen Ming-Cai . Synthesis and characterization of silsesquioxane-cored star-shaped hybrid polymer via "grafting from" RAFT polymerization. Chinese Chemical Letters, 2016, 27(11): 1696-1700. doi: 10.1016/j.cclet.2016.04.018

    13. [13]

      Zhi Quan ZHAO Li Zeng PENG Yu Lin LI . Novel Phenomenon of Oxygen-to-oxygen Silyl Migration in Directed Aldol Reaction. Chinese Chemical Letters, 2005, 16(3): 290-292.

    14. [14]

      Wang ChengWang JiFu DandanYan QiongPang DaiwenZhang Zhiling . Topography guiding the accelerated and persistently directional cell migration induced by vaccinia virus. Chinese Chemical Letters, 2020, 31(1): 167-171. doi: 10.1016/j.cclet.2019.05.043

    15. [15]

      Fang QingZhang WeiChen XinghuaZhang YuanjianHu Ming . Hierarchically porous carbon cages synthesized through in situ migration of templates. Chinese Chemical Letters, 2020, 31(1): 303-306. doi: 10.1016/j.cclet.2019.04.006

    16. [16]

      Wajahat AliWeitao GongMehdi HassanWeidong QuLu LiuGuiling Ning . Guest induced morphology transitions of star shaped pillar[5]arene trimer via endo host-guest and "exo-wall" electron-transfer interactions. Chinese Chemical Letters, 2021, 32(1): 371-374. doi: 10.1016/j.cclet.2020.03.044

    17. [17]

      CHEN Shui-ShengQIAO RuiSHENG Liang-QuanYANG Song . A New Three-dimensional Supramolecular Polymer Built from Non-covalent Bonding Interactions. Chinese Journal of Structural Chemistry, 2014, 33(4): 557-562.

  • PDF Downloads(0)
  • Abstract views(2906)
  • HTML views(67)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint