Role of Hydrodynamic Interactions in the Deformation of Star Polymers in Poiseuille Flow

Zhen-Yue Yang Xiao-Fei Tian Li-Jun Liu Ji-Zhong Chen

Citation:  Zhen-Yue Yang, Xiao-Fei Tian, Li-Jun Liu, Ji-Zhong Chen. Role of Hydrodynamic Interactions in the Deformation of Star Polymers in Poiseuille Flow[J]. Chinese Journal of Polymer Science, 2020, 38(4): 363-370. doi: 10.1007/s10118-020-2346-5 shu

Role of Hydrodynamic Interactions in the Deformation of Star Polymers in Poiseuille Flow

English


    1. [1]

      Larson, R. G. The structure and rheology of complex fluids. New York, Oxford University Press, 1999.

    2. [2]

      Bird, R. B.; Armstrong, R. C.; Hassager, O. Dynamics of polymeric liquids: fluid mechanics. New York, Wiley, 1987.

    3. [3]

      Leduc, P.; Haber, C.; Bao, G.; Wirtz, D. Dynamics of individual flexible polymers in a shear flow. Nature 1999, 399, 564−566. doi: 10.1038/21148

    4. [4]

      Saha Dalal, I.; Albaugh, A.; Hoda, N.; Larson, R. G. Tumbling and deformation of isolated polymer chains in shearing flow. Macromolecules 2012, 45, 9493−9499. doi: 10.1021/ma3014349

    5. [5]

      Chen, W.; Chen, J.; Liu, L.; Xu, X.; An, L. Effects of chain stiffness on conformational and dynamical properties of individual ring polymers in shear flow. Macromolecules 2013, 46, 7542−7549. doi: 10.1021/ma401137c

    6. [6]

      Chen, W.; Chen, J.; An, L. Tumbling and tank-treading dynamics of individual ring polymers in shear flow. Soft Matter 2013, 9, 4312−4318. doi: 10.1039/c3sm50352f

    7. [7]

      Nikoubashman, A.; Likos, C. N. Branched polymers under shear. Macromolecules 2010, 43, 1610−1620. doi: 10.1021/ma902212s

    8. [8]

      Singh, S. P.; Gompper, G.; Winkler, R. G. Steady state sedimentation of ultrasoft colloids. J. Chem. Phys. 2018, 148, 084901. doi: 10.1063/1.5001886

    9. [9]

      Grest, G. S.; Kremer, K.; Witten, T. A. Structure of many-arm star polymers: a molecular dynamics simulation. Macromolecules 1987, 20, 1376−1383. doi: doi.org/10.1021/ma00172a035

    10. [10]

      Vlassopoulos, D.; Fytas, G.; Pakula, T.; Roovers, J. Multiarm star polymers dynamics. J. Phys.: Condens. Matter 2001, 13, R855−R876. doi: 10.1088/0953-8984/13/41/202

    11. [11]

      Likos, C. N. Effective interactions in soft condensed matter physics. Phys. Rep. 2001, 348, 267−439. doi: 10.1016/S0370-1573(00)00141-1

    12. [12]

      Xu, X.; Chen, J. Effect of functionality on unentangled star polymers at equilibrium and under shear flow. J. Chem. Phys. 2016, 144, 244905. doi: 10.1063/1.4955098

    13. [13]

      Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J. T.; An, Z. S.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G. Star polymers. Chem. Rev. 2016, 116, 6743−6836. doi: 10.1021/acs.chemrev.6b00008

    14. [14]

      Ferry, J. D. Viscoelastic properties of polymers. New York, Wiley, 1980.

    15. [15]

      Zimm, B. H. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 1956, 24, 269−278. doi: 10.1063/1.1742462

    16. [16]

      Debye, P.; Bueche, A. M. Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. Chem. Phys. 1948, 16, 573−579. doi: 10.1063/1.1746948

    17. [17]

      De Gennes, P. G. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J. Chem. Phys. 1974, 60, 5030−5042. doi: 10.1063/1.1681018

    18. [18]

      Brochard-Wyart, F. Deformations of one tethered chain in strong flows. Europhys. Lett. 1993, 23, 105−111. doi: 10.1209/0295-5075/23/2/005

    19. [19]

      Brochard-Wyart, F.; Hervet, H.; Pincus, P. Unwinding of polymer-chains under forces or flows. Europhys. Lett. 1994, 26, 511−516. doi: 10.1209/0295-5075/26/7/006

    20. [20]

      Ladoux, B.; Doyle, P. S. Stretching tethered DNA chains in shear flow. Europhys. Lett. 2000, 52, 511−517. doi: 10.1209/epl/i2000-00467-y

    21. [21]

      Brochardwyart, F. Polymer chains under strong flows: stems and flowers. Europhys. Lett. 1995, 30, 387−392. doi: 10.1209/0295-5075/30/7/002

    22. [22]

      Perkins, T. T.; Smith, D. E.; Larson, R. G.; Chu, S. Stretching of a single tethered polymer in a uniform flow. Science 1995, 268, 83−87. doi: 10.1126/science.7701345

    23. [23]

      Gratton, Y.; Slater, G. W. Molecular dynamics study of tethered polymers in shear flow. Eur. Phys. J. E 2005, 17, 455−465. doi: 10.1140/epje/i2005-10020-0

    24. [24]

      Webster, M. A.; Yeomans, J. M. Modeling a tethered polymer in Poiseuille flow. J. Chem. Phys. 2005, 122, 164903. doi: 10.1063/1.1884105

    25. [25]

      Smith, D. E.; Babcock, H. P.; Chu, S. Single-polymer dynamics in steady shear flow. Science 1999, 283, 1724−1727. doi: 10.1126/science.283.5408.1724

    26. [26]

      Jendrejack, R. M.; Dimalanta, E. T.; Schwartz, D. C.; Graham, M. D.; de Pablo, J. J. DNA dynamics in a microchannel. Phys. Rev. Lett. 2003, 91, 038102. doi: 10.1103/PhysRevLett.91.038102

    27. [27]

      Jendrejack, R. M.; Schwartz, D. C.; de Pablo, J. J.; Graham, M. D. Shear-induced migration in flowing polymer solutions: simulation of long-chain DNA in microchannels. J. Chem. Phys. 2004, 120, 2513−2529. doi: 10.1063/1.1637331

    28. [28]

      Schroeder, C. M.; Teixeira, R. E.; Shaqfeh, E. S. G.; Chu, S. Characteristic periodic motion of polymers in shear flow. Phys. Rev. Lett. 2005, 95, 018301. doi: 10.1103/PhysRevLett.95.018301

    29. [29]

      Ripoll, M.; Winkler, R. G.; Gompper, G. Star polymers in shear flow. Phys. Rev. Lett. 2006, 96, 188302. doi: 10.1103/PhysRevLett.96.188302

    30. [30]

      Delgado-Buscalioni, R. Cyclic motion of a grafted polymer under shear flow. Phys. Rev. Lett. 2006, 96, 088303. doi: 10.1103/PhysRevLett.96.088303

    31. [31]

      Ripoll, M.; Winkler, R. G.; Gompper, G. Hydrodynamic screening of star polymers in shear flow. Eur. Phys. J. E 2007, 23, 349−354. doi: 10.1140/epje/i2006-10220-0

    32. [32]

      Cannavacciuolo, L.; Winkler, R. G.; Gompper, G. Mesoscale simulations of polymer dynamics in microchannel flows. EPL 2008, 83, 34007. doi: 10.1209/0295-5075/83/34007

    33. [33]

      Steinhauser, D.; Koester, S.; Pfohl, T. Mobility gradient induces cross-streamline migration of semiflexible polymers. ACS Macro Lett. 2012, 1, 541−545. doi: 10.1021/mz3000539

    34. [34]

      Chertkov, M.; Kolokolov, I.; Lebedev, V.; Turitsyn, K. Polymer statistics in a random flow with mean shear. J. Fluid Mechanics 2005, 531, 251−260. doi: 10.1017/S0022112005003939

    35. [35]

      Celani, A.; Puliafito, A.; Turitsyn, K. Polymers in linear shear flow: a numerical study. Europhys. Lett. 2005, 70, 464−470. doi: 10.1209/epl/i2005-10015-5

    36. [36]

      Winkler, R. G. Semiflexible polymers in shear flow. Phys. Rev. Lett. 2006, 97, 128301. doi: 10.1103/PhysRevLett.97.128301

    37. [37]

      Rzehak, R.; Kienle, D.; Kawakatsu, T.; Zimmermann, W. Partial draining of a tethered polymer in flow. Europhys. Lett. 1999, 46, 821−826. doi: 10.1209/epl/i1999-00338-1

    38. [38]

      Sendner, C.; Netz, R. R. Single flexible and semiflexible polymers at high shear: non-monotonic and non-universal stretching response. Eur. Phys. J. E 2009, 30, 75−81.

    39. [39]

      Sing, C. E.; Alexander-Katz, A. Giant nonmonotonic stretching response of a self-associating polymer in shear flow. Phys. Rev. Lett. 2011, 107, 198302. doi: 10.1103/PhysRevLett.107.198302

    40. [40]

      Liebetreu, M.; Ripoll, M.; Likos, C. N. Trefoil knot hydrodynamic delocalization on sheared ring polymers. ACS Macro Lett. 2018, 7, 447−452. doi: 10.1021/acsmacrolett.8b00059

    41. [41]

      Weeks, J. D.; Chandler, D.; Andersen, H. C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 1971, 54, 5237−5247. doi: 10.1063/1.1674820

    42. [42]

      Bishop, M.; Kalos, M. H.; Frisch, H. L. Molecular-dynamics of polymeric systems. J. Chem. Phys. 1979, 70, 1299−1304. doi: 10.1063/1.437567

    43. [43]

      Kremer, K.; Grest, G. S. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 1990, 92, 5057−5086. doi: 10.1063/1.458541

    44. [44]

      Li, Z. Q.; Li, Y. W.; Wang, Y. M.; Sun, Z. Y; An, L. J. Transport of star-branched polymers in nanoscale pipe channels simulated with disspative particle dynamics simualtion. Macromolecules 2010, 43, 5896−5903. doi: 10.1021/ma100734r

    45. [45]

      Malevanets, A.; Kapral, R. Mesoscopic model for solvent dynamics. J. Chem. Phys. 1999, 110, 8605−8613. doi: 10.1063/1.478857

    46. [46]

      Malevanets, A.; Kapral, R. Solute molecular dynamics in a mesoscale solvent. J. Chem. Phys. 2000, 112, 7260−7269. doi: 10.1063/1.481289

    47. [47]

      Mussawisade, K.; Ripoll, M.; Winkler, R. G.; Gompper, G. Dynamics of polymers in a particle-based mesoscopic solvent. J. Chem. Phys. 2005, 123, 144905. doi: 10.1063/1.2041527

    48. [48]

      Ihle, T.; Kroll, D. M. Stochastic rotation dynamics II. Transport coefficients, numerics, and long-time tails. Phys. Rev. E 2003, 67, 066706.

    49. [49]

      Ihle, T.; Kroll, D. M. Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. Phys. Rev. E 2001, 63, 020201(R). doi: 10.1103/PhysRevE.63.020201

    50. [50]

      Ihle, T.; Kroll, D. M. Stochastic rotation dynamics I. Formalism, Galilean invariance, and Green-Kubo relations. Phys. Rev. E 2003, 67, 066705.

    51. [51]

      Huang, C. C.; Chatterji, A.; Sutmann, G.; Gompper, G.; Winkler, R. G. Cell-level canonical sampling by velocity scaling for multiparticle collision dynamics simulations. J. Comput. Phys. 2010, 229, 168−177. doi: 10.1016/j.jcp.2009.09.024

    52. [52]

      Padding, J. T.; Louis, A. A. Hydrodynamic interactions and Brownian forces in colloidal suspensions: coarse-graining over time and length scales. Phys. Rev. E 2006, 74, 031402.

    53. [53]

      Nikoubashman, A.; Likos, C. N. Flow-induced polymer translocation through narrow and patterned channels. J. Chem. Phys. 2010, 133, 074901. doi: 10.1063/1.3466918

    54. [54]

      Nikoubashman, A.; Mahynski, N. A.; Pirayandeh, A. H.; Panagiotopoulos, A. Z. Flow-induced demixing of polymer-colloid mixtures in microfluidic channels. J. Chem. Phys. 2014, 140, 094903. doi: 10.1063/1.4866762

    55. [55]

      Weiss, L. B.; Nikoubashman, A.; Likos, C. N. Topology-sensitive microfluidic filter for polymers of varying stiffness. ACS Macro Lett. 2017, 6, 1426−1431. doi: 10.1021/acsmacrolett.7b00768

    56. [56]

      Srivastva, D.; Nikoubashman, A. Flow behavior of chain and star polymers and their mixtures. Polymers 2018, 10, 599. doi: 10.3390/polym10060599

    57. [57]

      Lamura, A.; Gompper, G.; Ihle, T.; Kroll, D. M. Multi-particle collision dynamics: flow around a circular and a square cylinder. Europhys. Lett. 2001, 56, 319−325. doi: 10.1209/epl/i2001-00522-9

    58. [58]

      Lamura, A.; Gompper, G. Numerical study of the flow around a cylinder using multi-particle collision dynamics. Eur. Phys. J. E 2002, 9, 477−485. doi: 10.1140/epje/i2002-10107-0

    59. [59]

      Chelakkot, R.; Winkler, R. G.; Gompper, G. Migration of semiflexible polymers in microcapillary flow. Europhys. Lett. 2010, 91, 14001. doi: 10.1209/0295-5075/91/14001

    60. [60]

      Chelakkot, R.; Winkler, R. G.; Gompper, G. Semiflexible polymer conformation, distribution and migration in microcapillary flows. J. Phys.: Condens. Matter 2011, 23, 184117. doi: 10.1088/0953-8984/23/18/184117

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1200
  • HTML全文浏览量:  14
文章相关
  • 发布日期:  2020-04-01
  • 收稿日期:  2019-07-07
  • 修回日期:  2019-08-06
  • 网络出版日期:  2019-10-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章