Ultrasound-responsive Homopolymer Nanoparticles

Bo Yang Jian-Zhong Du

Citation:  Bo Yang, Jian-Zhong Du. Ultrasound-responsive Homopolymer Nanoparticles[J]. Chinese Journal of Polymer Science, 2020, 38(4): 349-356. doi: 10.1007/s10118-020-2345-6 shu

Ultrasound-responsive Homopolymer Nanoparticles

English


    1. [1]

      Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969−5985. doi: 10.1039/c2cs35115c

    2. [2]

      Wang, M. Z.; Wang, T.; Yuan, K.; Du, J. Z. Preparation of water dispersible poly(methyl methacrylate)-based vesicles for facile persistent antibacterial applications. Chinese J. Polym. Sci. 2016, 34, 44−51. doi: 10.1007/s10118-016-1725-4

    3. [3]

      Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239−1250. doi: 10.1007/s10118-018-2156-1

    4. [4]

      Xiao, J. G.; Hu, Y.; Du, J. Z. Polymer nanodisks by collapse of nanocapsules. Sci. China Chem. 2018, 61, 569−575. doi: 10.1007/s11426-017-9209-3

    5. [5]

      Song, T.; Xi, Y. J.; Du, J. Z. Antibacterial hydrogels incorporated with poly(glutamic acid)-based vesicles. Acta Polymerica Sinica (in Chinese) 2018, 119−128. doi: 10.11777/j.issn1000-3304.2018.17229

    6. [6]

      Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751−760. doi: 10.1038/nnano.2007.387

    7. [7]

      Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 2017, 64, 1−22. doi: 10.1016/j.progpolymsci.2015.05.001

    8. [8]

      Chen, W. Q.; Du, J. Z. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci. Rep. 2013, 3, 2162. doi: 10.1038/srep02162

    9. [9]

      Zhao, Y. Z.; Du, L. N.; Lu, C. T.; Jin, Y. G.; Ge, S. P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomed. 2013, 8, 1621−1633.

    10. [10]

      Wang, D. R.; Wang, X. G. Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci. 2013, 38, 271−301. doi: 10.1016/j.progpolymsci.2012.07.003

    11. [11]

      Al-Ahmady, Z.; Kostarelos, K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem. Rev. 2016, 116, 3883−3918. doi: 10.1021/acs.chemrev.5b00578

    12. [12]

      Yuan, K.; Zhou, X.; Du, J. Z. Synthesis and characterization of thermo-responsive polypeptide-based vesicles with photo-cross-linked membranes. Acta Phys. Chim. Sin. 2017, 33, 656−660.

    13. [13]

      Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett. 2018, 18, 5562−5568. doi: 10.1021/acs.nanolett.8b01985

    14. [14]

      Xu, X. F.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Polymerization-induced self-assembly generating vesicles with adjustable pH-responsive release performance. Macromolecules 2019, 52, 1965−1975. doi: 10.1021/acs.macromol.9b00144

    15. [15]

      Qiu, L.; Zhao, L.; Xing, C.; Zhan, Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. Chin. Chem. Lett. 2018, 29, 301−304. doi: 10.1016/j.cclet.2017.09.048

    16. [16]

      Tan, J.; Deng, Z.; Liu, G.; Hu, J.; Liu, S. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials 2018, 178, 608−619. doi: 10.1016/j.biomaterials.2018.03.035

    17. [17]

      Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 2014, 43, 3595−3629. doi: 10.1039/c3cs60436e

    18. [18]

      Xiao, Y. F.; Hu, Y.; Du, J. Z. Controlling blood sugar levels with a glycopolymersome. Mater. Horiz. 2019, DOI: 10.1039/C9MH00625G.

    19. [19]

      Wright, D. B.; Thompson, M. P.; Touve, M. A.; Carlini, A. S.; Gianneschi, N. C. Enzyme-responsive polymer nanoparticles via ring-opening metathesis polymerization-induced self-assembly. Macromol. Rapid Commun. 2019, 40, 1800467. doi: 10.1002/marc.201800467

    20. [20]

      Xuan, J.; Pelletier, M.; Xia, H.; Zhao, Y. Ultrasound-induced disruption of amphiphilic block copolymer micelles. Macromol. Chem. Phys. 2011, 212, 498−506. doi: 10.1002/macp.201000624

    21. [21]

      Xuan, J.; Boissiere, O.; Zhao, Y.; Yan, B.; Tremblay, L.; Lacelle, S.; Xia, H.; Zhao, Y. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir 2012, 28, 16463−16468. doi: 10.1021/la303946b

    22. [22]

      Yin, T.; Wang, P.; Li, J.; Zheng, R.; Zheng, B.; Cheng, D.; Li, R.; Lai, J.; Shuai, X. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 2013, 34, 4532−4543. doi: 10.1016/j.biomaterials.2013.02.067

    23. [23]

      Yin, T.; Wang, P.; Li, J.; Wang, Y.; Zheng, B.; Zheng, R.; Cheng, D.; Shuai, X. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 2014, 35, 5932−5943. doi: 10.1016/j.biomaterials.2014.03.072

    24. [24]

      Wang, Y.; Yin, T.; Su, Z.; Qiu, C.; Wang, Y.; Zheng, R.; Chen, M.; Shuai, X. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2018, 11, 3710−3721. doi: 10.1007/s12274-017-1939-y

    25. [25]

      Zhang, L.; Yin, T.; Li, B.; Zheng, R.; Qiu, C.; Lam, K. S.; Zhang, Q.; Shuai, X. Size-modulable nanoprobe for high-performance ultrasound imaging and drug delivery against cancer. ACS Nano 2018, 12, 3449−3460. doi: 10.1021/acsnano.8b00076

    26. [26]

      Zhou, F.; Xie, M.; Chen, D. Structure and ultrasonic sensitivity of the superparticles formed by self-assembly of single chain Janus nanoparticles. Macromolecules 2014, 47, 365−372. doi: 10.1021/ma401589z

    27. [27]

      Zhang, J.; Liu, K.; Mullen, K.; Yin, M. Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications. Chem. Commun. 2015, 51, 11541−11555. doi: 10.1039/C5CC03016A

    28. [28]

      Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 2014, 8, 5022−31. doi: 10.1021/nn5010974

    29. [29]

      Fan, L.; Lu, H.; Zou, K. D.; Chen, J.; Du, J. Z. Homopolymer vesicles with a gradient bilayer membrane as drug carriers. Chem. Commun. 2013, 49, 11521−11523. doi: 10.1039/c3cc45873c

    30. [30]

      Sun, H.; Liu, D. Q.; Du, J. Z. Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction. Chem. Sci. 2019, 10, 657−664. doi: 10.1039/C8SC03995J

    31. [31]

      Sun, H.; Zhu, Y. Q.; Yang, B.; Wang, Y. F.; Wu, Y. P.; Du, J. Z. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J. Mater. Chem. A 2016, 4, 12088−12097. doi: 10.1039/C6TA04330E

    32. [32]

      Zhu, Y. Q.; Liu, L.; Du, J. Z. Probing into homopolymer self-assembly: How does hydrogen bonding influence morphology? Macromolecules 2013, 46, 194−203. doi: 10.1021/ma302176a

    33. [33]

      Sun, H.; Du, J. Z. Plasmonic vesicles with tailored collective properties. Nanoscale 2018, 10, 17354−17361. doi: 10.1039/C8NR04820G

    34. [34]

      Liu, J.; Huang, W.; Pang, Y.; Huang, P.; Zhu, X.; Zhou, Y.; Yan, D. Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy. Angew. Chem. Int. Ed. 2011, 50, 9162−9166. doi: 10.1002/anie.201102280

    35. [35]

      Yin, M.; Kuhlmann, C. R. W.; Sorokina, K.; Li, C.; Mihov, G.; Pietrowski, E.; Koynov, K.; Klapper, M.; Luhmann, H. J.; Müllen, K.; Weil, T. Novel fluorescent core-shell nanocontainers for cell membrane transport. Biomacromolecules 2008, 9, 1381−1389. doi: 10.1021/bm701138g

    36. [36]

      Yin, M.; Shen, J.; Pflugfelder, G. O.; Müllen, K. A fluorescent core-shell dendritic macromolecule specifically stains the extracellular matrix. J. Am. Chem. Soc. 2008, 130, 7806−7807. doi: 10.1021/ja8022362

    37. [37]

      Sandanaraj, B. S.; Demont, R.; Thayumanavan, S. Generating patterns for sensing using a single receptor scaffold. J. Am. Chem. Soc. 2007, 129, 3506−3507. doi: 10.1021/ja070229f

    38. [38]

      Mane, S. R.; Rao N, V.; Chaterjee, K.; Dinda, H.; Nag, S.; Kishore, A.; Das Sarma, J.; Shunmugam, R. Amphiphilic homopolymer vesicles as unique nano-carriers for cancer therapy. Macromolecules 2012, 45, 8037−8042. doi: 10.1021/ma301644m

    39. [39]

      Lim, E. K.; Huh, Y. M.; Yang, J.; Lee, K.; Suh, J. S.; Haam, S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater. 2011, 23, 2436−2442. doi: 10.1002/adma.201100351

    40. [40]

      Sun, H.; Wang, F. Y. K.; Du, J. Z. Preparation, application and perspective in polymer vesicles with an inhomogeneous membrane. Sci. Sin. Chim. 2019, 49, 877−890. doi: 10.1360/N032018-00259

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1100
  • HTML全文浏览量:  19
文章相关
  • 发布日期:  2020-04-01
  • 收稿日期:  2019-07-25
  • 修回日期:  2019-08-22
  • 网络出版日期:  2019-09-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章