Citation: Bo Yang, Jian-Zhong Du. Ultrasound-responsive Homopolymer Nanoparticles[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 349-356. doi: 10.1007/s10118-020-2345-6 shu

Ultrasound-responsive Homopolymer Nanoparticles

  • Corresponding author: Jian-Zhong Du,
  • Received Date: 25 July 2019
    Revised Date: 22 August 2019
    Available Online: 24 September 2019

  • Noninvasive ultrasound is a more effective strategy for on-demand drug delivery of polymeric nanoparticles than many other stimuli. However, the preparation of ultrasound-responsive homopolymer nanoparticles is still very challenging. In this study, we disclose the regulating factors of ultrasound responsiveness of homopolymer nanoparticles and the disaggregation behavior of homopolymer nanoparticle aggregates. Homopolymer nanoparticles such as vesicles and large compound micelles (LCMs) are self-assembled from poly(methoxyethyl methacrylate) (PMEMA) and poly(amic acid) (PAA), respectively. The ultrasound responsiveness of PAA vesicles at metastable state could be regulated by tuning the self-assembly temperature (Ts), and was optimized when Ts is around the glass transition temperature (Tg) of PAA. However, the PMEMA LCMs did not respond to ultrasound as they are at stable state. On the other hand, poly(2-(2-ethoxyethoxy)ethyl acrylate) (PEEA) could self-assemble into vesicle aggregates or complex micelle aggregates, which were dissociated upon sonication. Overall, the above findings provide us with a fresh insight for designing ultrasound-responsive polymeric nanoparticles.
  • 加载中
    1. [1]

      Mai, Y.; Eisenberg, A. Self-assembly of block copolymers. Chem. Soc. Rev. 2012, 41, 5969−5985.  doi: 10.1039/c2cs35115c

    2. [2]

      Wang, M. Z.; Wang, T.; Yuan, K.; Du, J. Z. Preparation of water dispersible poly(methyl methacrylate)-based vesicles for facile persistent antibacterial applications. Chinese J. Polym. Sci. 2016, 34, 44−51.  doi: 10.1007/s10118-016-1725-4

    3. [3]

      Zou, Y. J.; He, S. S.; Du, J. Z. ε-Poly(L-lysine)-based hydrogels with fast-acting and prolonged antibacterial activities. Chinese J. Polym. Sci. 2018, 36, 1239−1250.  doi: 10.1007/s10118-018-2156-1

    4. [4]

      Xiao, J. G.; Hu, Y.; Du, J. Z. Polymer nanodisks by collapse of nanocapsules. Sci. China Chem. 2018, 61, 569−575.  doi: 10.1007/s11426-017-9209-3

    5. [5]

      Song, T.; Xi, Y. J.; Du, J. Z. Antibacterial hydrogels incorporated with poly(glutamic acid)-based vesicles. Acta Polymerica Sinica (in Chinese) 2018, 119−128.  doi: 10.11777/j.issn1000-3304.2018.17229

    6. [6]

      Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751−760.  doi: 10.1038/nnano.2007.387

    7. [7]

      Zhu, Y. Q.; Yang, B.; Chen, S.; Du, J. Z. Polymer vesicles: Mechanism, preparation, application, and responsive behavior. Prog. Polym. Sci. 2017, 64, 1−22.  doi: 10.1016/j.progpolymsci.2015.05.001

    8. [8]

      Chen, W. Q.; Du, J. Z. Ultrasound and pH dually responsive polymer vesicles for anticancer drug delivery. Sci. Rep. 2013, 3, 2162.  doi: 10.1038/srep02162

    9. [9]

      Zhao, Y. Z.; Du, L. N.; Lu, C. T.; Jin, Y. G.; Ge, S. P. Potential and problems in ultrasound-responsive drug delivery systems. Int. J. Nanomed. 2013, 8, 1621−1633.

    10. [10]

      Wang, D. R.; Wang, X. G. Amphiphilic azo polymers: molecular engineering, self-assembly and photoresponsive properties. Prog. Polym. Sci. 2013, 38, 271−301.  doi: 10.1016/j.progpolymsci.2012.07.003

    11. [11]

      Al-Ahmady, Z.; Kostarelos, K. Chemical components for the design of temperature-responsive vesicles as cancer therapeutics. Chem. Rev. 2016, 116, 3883−3918.  doi: 10.1021/acs.chemrev.5b00578

    12. [12]

      Yuan, K.; Zhou, X.; Du, J. Z. Synthesis and characterization of thermo-responsive polypeptide-based vesicles with photo-cross-linked membranes. Acta Phys. Chim. Sin. 2017, 33, 656−660.

    13. [13]

      Wang, F. Y. K.; Gao, J. Y.; Xiao, J. G.; Du, J. Z. Dually gated polymersomes for gene delivery. Nano Lett. 2018, 18, 5562−5568.  doi: 10.1021/acs.nanolett.8b01985

    14. [14]

      Xu, X. F.; Pan, C. Y.; Zhang, W. J.; Hong, C. Y. Polymerization-induced self-assembly generating vesicles with adjustable pH-responsive release performance. Macromolecules 2019, 52, 1965−1975.  doi: 10.1021/acs.macromol.9b00144

    15. [15]

      Qiu, L.; Zhao, L.; Xing, C.; Zhan, Y. Redox-responsive polymer prodrug/AgNPs hybrid nanoparticles for drug delivery. Chin. Chem. Lett. 2018, 29, 301−304.  doi: 10.1016/j.cclet.2017.09.048

    16. [16]

      Tan, J.; Deng, Z.; Liu, G.; Hu, J.; Liu, S. Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics. Biomaterials 2018, 178, 608−619.  doi: 10.1016/j.biomaterials.2018.03.035

    17. [17]

      Mo, R.; Jiang, T.; Di, J.; Tai, W.; Gu, Z. Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. Chem. Soc. Rev. 2014, 43, 3595−3629.  doi: 10.1039/c3cs60436e

    18. [18]

      Xiao, Y. F.; Hu, Y.; Du, J. Z. Controlling blood sugar levels with a glycopolymersome. Mater. Horiz. 2019, DOI: 10.1039/C9MH00625G.  doi: 10.1039/C9MH00625G

    19. [19]

      Wright, D. B.; Thompson, M. P.; Touve, M. A.; Carlini, A. S.; Gianneschi, N. C. Enzyme-responsive polymer nanoparticles via ring-opening metathesis polymerization-induced self-assembly. Macromol. Rapid Commun. 2019, 40, 1800467.  doi: 10.1002/marc.201800467

    20. [20]

      Xuan, J.; Pelletier, M.; Xia, H.; Zhao, Y. Ultrasound-induced disruption of amphiphilic block copolymer micelles. Macromol. Chem. Phys. 2011, 212, 498−506.  doi: 10.1002/macp.201000624

    21. [21]

      Xuan, J.; Boissiere, O.; Zhao, Y.; Yan, B.; Tremblay, L.; Lacelle, S.; Xia, H.; Zhao, Y. Ultrasound-responsive block copolymer micelles based on a new amplification mechanism. Langmuir 2012, 28, 16463−16468.  doi: 10.1021/la303946b

    22. [22]

      Yin, T.; Wang, P.; Li, J.; Zheng, R.; Zheng, B.; Cheng, D.; Li, R.; Lai, J.; Shuai, X. Ultrasound-sensitive siRNA-loaded nanobubbles formed by hetero-assembly of polymeric micelles and liposomes and their therapeutic effect in gliomas. Biomaterials 2013, 34, 4532−4543.  doi: 10.1016/j.biomaterials.2013.02.067

    23. [23]

      Yin, T.; Wang, P.; Li, J.; Wang, Y.; Zheng, B.; Zheng, R.; Cheng, D.; Shuai, X. Tumor-penetrating codelivery of siRNA and paclitaxel with ultrasound-responsive nanobubbles hetero-assembled from polymeric micelles and liposomes. Biomaterials 2014, 35, 5932−5943.  doi: 10.1016/j.biomaterials.2014.03.072

    24. [24]

      Wang, Y.; Yin, T.; Su, Z.; Qiu, C.; Wang, Y.; Zheng, R.; Chen, M.; Shuai, X. Highly uniform ultrasound-sensitive nanospheres produced by a pH-induced micelle-to-vesicle transition for tumor-targeted drug delivery. Nano Res. 2018, 11, 3710−3721.  doi: 10.1007/s12274-017-1939-y

    25. [25]

      Zhang, L.; Yin, T.; Li, B.; Zheng, R.; Qiu, C.; Lam, K. S.; Zhang, Q.; Shuai, X. Size-modulable nanoprobe for high-performance ultrasound imaging and drug delivery against cancer. ACS Nano 2018, 12, 3449−3460.  doi: 10.1021/acsnano.8b00076

    26. [26]

      Zhou, F.; Xie, M.; Chen, D. Structure and ultrasonic sensitivity of the superparticles formed by self-assembly of single chain Janus nanoparticles. Macromolecules 2014, 47, 365−372.  doi: 10.1021/ma401589z

    27. [27]

      Zhang, J.; Liu, K.; Mullen, K.; Yin, M. Self-assemblies of amphiphilic homopolymers: synthesis, morphology studies and biomedical applications. Chem. Commun. 2015, 51, 11541−11555.  doi: 10.1039/C5CC03016A

    28. [28]

      Zhu, Y. Q.; Fan, L.; Yang, B.; Du, J. Z. Multifunctional homopolymer vesicles for facile immobilization of gold nanoparticles and effective water remediation. ACS Nano 2014, 8, 5022−31.  doi: 10.1021/nn5010974

    29. [29]

      Fan, L.; Lu, H.; Zou, K. D.; Chen, J.; Du, J. Z. Homopolymer vesicles with a gradient bilayer membrane as drug carriers. Chem. Commun. 2013, 49, 11521−11523.  doi: 10.1039/c3cc45873c

    30. [30]

      Sun, H.; Liu, D. Q.; Du, J. Z. Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π-π interaction. Chem. Sci. 2019, 10, 657−664.  doi: 10.1039/C8SC03995J

    31. [31]

      Sun, H.; Zhu, Y. Q.; Yang, B.; Wang, Y. F.; Wu, Y. P.; Du, J. Z. Template-free fabrication of nitrogen-doped hollow carbon spheres for high-performance supercapacitors based on a scalable homopolymer vesicle. J. Mater. Chem. A 2016, 4, 12088−12097.  doi: 10.1039/C6TA04330E

    32. [32]

      Zhu, Y. Q.; Liu, L.; Du, J. Z. Probing into homopolymer self-assembly: How does hydrogen bonding influence morphology? Macromolecules 2013, 46, 194−203.  doi: 10.1021/ma302176a

    33. [33]

      Sun, H.; Du, J. Z. Plasmonic vesicles with tailored collective properties. Nanoscale 2018, 10, 17354−17361.  doi: 10.1039/C8NR04820G

    34. [34]

      Liu, J.; Huang, W.; Pang, Y.; Huang, P.; Zhu, X.; Zhou, Y.; Yan, D. Molecular self-assembly of a homopolymer: an alternative to fabricate drug-delivery platforms for cancer therapy. Angew. Chem. Int. Ed. 2011, 50, 9162−9166.  doi: 10.1002/anie.201102280

    35. [35]

      Yin, M.; Kuhlmann, C. R. W.; Sorokina, K.; Li, C.; Mihov, G.; Pietrowski, E.; Koynov, K.; Klapper, M.; Luhmann, H. J.; Müllen, K.; Weil, T. Novel fluorescent core-shell nanocontainers for cell membrane transport. Biomacromolecules 2008, 9, 1381−1389.  doi: 10.1021/bm701138g

    36. [36]

      Yin, M.; Shen, J.; Pflugfelder, G. O.; Müllen, K. A fluorescent core-shell dendritic macromolecule specifically stains the extracellular matrix. J. Am. Chem. Soc. 2008, 130, 7806−7807.  doi: 10.1021/ja8022362

    37. [37]

      Sandanaraj, B. S.; Demont, R.; Thayumanavan, S. Generating patterns for sensing using a single receptor scaffold. J. Am. Chem. Soc. 2007, 129, 3506−3507.  doi: 10.1021/ja070229f

    38. [38]

      Mane, S. R.; Rao N, V.; Chaterjee, K.; Dinda, H.; Nag, S.; Kishore, A.; Das Sarma, J.; Shunmugam, R. Amphiphilic homopolymer vesicles as unique nano-carriers for cancer therapy. Macromolecules 2012, 45, 8037−8042.  doi: 10.1021/ma301644m

    39. [39]

      Lim, E. K.; Huh, Y. M.; Yang, J.; Lee, K.; Suh, J. S.; Haam, S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv. Mater. 2011, 23, 2436−2442.  doi: 10.1002/adma.201100351

    40. [40]

      Sun, H.; Wang, F. Y. K.; Du, J. Z. Preparation, application and perspective in polymer vesicles with an inhomogeneous membrane. Sci. Sin. Chim. 2019, 49, 877−890.  doi: 10.1360/N032018-00259

  • 加载中
    1. [1]

      Rui Gang Hou Ling Min Yi He Ming Lin Jia Wei Li Chuan Xia Huang . Formation of polymer vesicles by amphiphilic fluorosiloxane graft copolymers in solution. Chinese Chemical Letters, 2011, 22(9): 1119-1122. doi: 10.1016/j.cclet.2011.04.003

    2. [2]

      Fa Bao Zhao Zhi Lei Liu Jian Ping Sun Liang Feng Ji Wen Hu . Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water. Chinese Chemical Letters, 2009, 20(2): 231-234. doi: 10.1016/j.cclet.2008.10.044

    3. [3]

      Cai YanWang YangWang ChenweiLong RenhuaCao LeyuChen YanmeiYao Yong . Hierarchical self-assembly of 3D amphiphilic discrete organoplatinum (II) metallacage in water. Chinese Chemical Letters, 2020, 31(3): 689-692. doi: 10.1016/j.cclet.2019.08.036

    4. [4]

      Zi Chen LI Wei JIN Fu Mian LI . Synthesis of Cholesterol Derivative with Amino Acid as Hydrophilic Group and the Vesicles Prepared Therefrom. Chinese Chemical Letters, 1999, 10(12): 1003-1006.

    5. [5]

      Zhen LuBogeng GuoYulai ZhaoLinxi HouLongqiang Xiao . One-step synthesis of cyclic polypyrazole and the self-assembly vesicles driven by hydrogen bond. Chinese Chemical Letters, 2022, 33(2): 825-829. doi: 10.1016/j.cclet.2021.07.033

    6. [6]

      Xuan ZhangXu-Dong Li . Solvent atmosphere controlled self-assembly of unmodified C60:A facile approach for constructing various architectures. Chinese Chemical Letters, 2014, 25(6): 912-914. doi: 10.1016/j.cclet.2014.03.041

    7. [7]

      Yu-Xin ZhangXiao-Dong HaoZeng-Peng Diao . Templated self-assembly of Au-TiO2 binary nanoparticles-nanotubes. Chinese Chemical Letters, 2014, 25(6): 874-878. doi: 10.1016/j.cclet.2014.03.038

    8. [8]

      Zhi-Gang TaoTian-Guang ZhanTian-You ZhouXin ZhaoZhan-Ting Li . Synthesis, properties, and self-assembly of 2,3-bis(n-octyl)hexaazatriphenylene. Chinese Chemical Letters, 2013, 24(6): 453-456.

    9. [9]

      Xiao-Hai YangFang ZhaoLei-Liang HeKe-Min WangJin HuangQing WangJian-Bo LiuMeng Yang . A facile approach toward multicolor polymers:Supramolecular self-assembly via host-guest interaction. Chinese Chemical Letters, 2014, 25(10): 1318-1322. doi: 10.1016/j.cclet.2014.05.051

    10. [10]

      Ren-Bo WeiXiao-Gong WangYa-Ning He . Synthesis, self-assembly and photo-responsive behavior of AB2 shaped amphiphilic azo block copolymer. Chinese Chemical Letters, 2015, 26(7): 857-861. doi: 10.1016/j.cclet.2015.04.019

    11. [11]

      Shi Chao Xu Bing Cheng Hu Wei You Zhou Cheng Guo Sun Zu Liang Liu . The synthesis, self-assembly and electrocatalytic property of a novel disulphide derivatised cobalt(Ⅱ) deuteroporphyrin. Chinese Chemical Letters, 2012, 23(2): 157-160. doi: 10.1016/j.cclet.2011.11.011

    12. [12]

      Bei-Bei HuYue YuanXiao-Ping ZhouSan-Ming Li . Synthesis and properties of a novel bolaamphiphile surfactant derived from proline. Chinese Chemical Letters, 2016, 27(03): 447-450. doi: 10.1016/j.cclet.2015.12.019

    13. [13]

      Yan ZhaoJie DingXue-Bin Huang . Synthesis and self-assembly of phthalocyanines bearing sulfur-containing substituents. Chinese Chemical Letters, 2014, 25(1): 46-50.

    14. [14]

      Peng-Xia LiangDong WangZong-Cheng MiaoZhao-Kui JinHuai YangZhou Yang . Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives. Chinese Chemical Letters, 2014, 25(2): 237-242.

    15. [15]

      Ning GU Jian Hui LIAO Lan HUANG Zhi Rui GUO Wei YU Li Na XU Jing WANG . Self-assembly of Gold Nanoparticle Chains between Nanoelectrodes. Chinese Chemical Letters, 2006, 17(6): 845-847.

  • PDF Downloads(0)
  • Abstract views(2280)
  • HTML views(62)

通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By


DownLoad:  Full-Size Img  PowerPoint