Citation: Ying Yang, Tong Shan, Jian Cao, Hua-Chun Wang, Ji-Kang Wang, Hong-Liang Zhong, Yun-Xiang Xu. Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 342-348. doi: 10.1007/s10118-020-2342-9 shu

Unsymmetric Side Chains of Indacenodithiophene Copolymers Lead to Improved Packing and Device Performance

  • Corresponding author: Hong-Liang Zhong, hlzhong@sjtu.edu.cn Yun-Xiang Xu, yxxu@scu.edu.cn
  • † These authors contributed equally to this work.
  • Received Date: 23 July 2019
    Revised Date: 20 August 2019
    Accepted Date: 20 August 2019
    Available Online: 1 April 2020

  • Two conjugated polymers (PuIDTBD and PuIDTQ) with unsymmetric side chains have been prepared for polymer solar cells using two other polymers (PIDTBD and PIDTQ) with symmetric side chains as control compounds. The combination of methyl and 4-hexylphenyl side chains on the same bridged carbon can ensure good solubility, decrease π-π stacking distances, and bring proper miscibility with PC71BM simultaneously. Therefore, the corresponding polymer solar cells (PSCs) based on donor polymers with unsymmetric side chains exhibited enhanced short-circuit current density (JSC) and power conversion efficiency (PCE) compared with those of control polymers. The PIDTBD and PIDTQ based devices possessed low PCE of 2.13% and 1.48%, while PCEs of devices based on PuIDTBD and PuIDTQ were improved to 3.93% and 4.12%, respectively. The results demonstrate that unsymmetric side chain engineering of conjugated polymers is an effective approach to achieve high performance PSCs.
  • 加载中
    1. [1]

      Wang, G.; Melkonyan, F. S.; Facchetti, A.; Marks, T. J. All-polymer solar cells: recent progress, challenges, and prospects. Angew. Chem. Int. Ed. 2019, 58, 4129−4142.  doi: 10.1002/anie.201808976

    2. [2]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J. Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 2016, 28, 4734−4739.  doi: 10.1002/adma.201600281

    3. [3]

      Yang, B.; Zhang, S.; Chen, Y.; Cui, Y.; Liu, D.; Yao, H.; Zhang, J.; Wei, Z.; Hou, J. Investigation of conjugated polymers based on naphtho[2,3-c]thiophene-4,9-dione in fullerene-based and fullerene-free polymer solar cells. Macromolecules 2017, 50, 1453−1462.  doi: 10.1021/acs.macromol.6b02733

    4. [4]

      Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z. G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743.  doi: 10.1038/s41467-018-03207-x

    5. [5]

      Scharber, M. C. On the efficiency limit of conjugated polymer: fullerene-based bulk heterojunction solar cells. Adv. Mater. 2016, 28, 1994−2001.  doi: 10.1002/adma.201504914

    6. [6]

      Shi, Z.; Bai, Y.; Chen, X.; Zeng, R.; Tan, Z. A. Tandem structure: A breakthrough in power conversion efficiency for highly efficient polymer solar cells. Sustain. Energy Fuels 2019, 3, 910−934.  doi: 10.1039/C8SE00601F

    7. [7]

      Chochos, C. L.; Drakopoulou, S.; Katsouras, A.; Squeo, B. M.; Sprau, C.; Colsmann, A.; Gregoriou, V. G.; Cando, A. P.; Allard, S.; Scherf, U.; Gasparini, N.; Kazerouni, N.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Beyond donor-acceptor (D-A) approach: Structure-optoelectronic properties—organic photovoltaic performance correlation in new D-A1-D-A2 low-bandgap conjugated polymers. Macromol. Rapid Commun. 2017, 38, 1600720.  doi: 10.1002/marc.201600720

    8. [8]

      Guo, X.; Baumgarten, M.; Müllen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832−1908.  doi: 10.1016/j.progpolymsci.2013.09.005

    9. [9]

      Chochos, C. L.; Singh, R.; Kim, M.; Gasparini, N.; Katsouras, A.; Kulshreshtha, C.; Gregoriou, V. G.; Keivanidis, P. E.; Ameri, T.; Brabec, C. J.; Cho, K.; Avgeropoulos, A. Enhancement of the power conversion efficiency in organic photovoltaics by unveiling the appropriate polymer backbone enlargement approach. Adv. Funct. Mater. 2016, 26, 1840−1848.  doi: 10.1002/adfm.201504953

    10. [10]

      Mahesh, K.; Karpagam, S.; Pandian, K. How to design donor-acceptor based heterocyclic conjugated polymers for applications from organic electronics to sensors. Top. Curr. Chem. 2019, 377, 12.  doi: 10.1007/s41061-019-0237-4

    11. [11]

      Wang, M.; Hu, X.; Liu, L.; Duan, C.; Liu, P.; Ying, L.; Huang, F.; Cao, Y. Design and synthesis of copolymers of indacenodithiophene and naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) for polymer solar cells. Macromolecules 2013, 46, 3950−3958.  doi: 10.1021/ma400355w

    12. [12]

      Yin, Y.; Zhang, Y.; Zhao, L. Indaceno-based conjugated polymers for polymer solar cells. Macromol. Rapid Commun. 2018, 39, 1700697.  doi: 10.1002/marc.201700697

    13. [13]

      Bronstein, H.; Leem, D. S.; Hamilton, R.; Woebkenberg, P.; King, S.; Zhang, W.; Ashraf, R. S.; Heeney, M.; Anthopoulos, T. D.; Mello, J. D.; McCulloch, I. Indacenodithiophene-co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization. Macromolecules 2011, 44, 6649−6652.  doi: 10.1021/ma201158d

    14. [14]

      Ma, Y.; Kang, Z.; Zheng, Q. Recent advances in wide bandgap semiconducting polymers for polymer solar cells. J. Mater. Chem. A 2017, 5, 1860−1872.  doi: 10.1039/C6TA09325F

    15. [15]

      Qin, T.; Zang, Y.; Bai, W. Y.; Yao, K.; Xu, Y. X. The influence of oxygen atoms on conformation and π-π stacking of ladder-type donor-based polymers and their photovoltaic properties. Macromol. Rapid Commun. 2017, 38, 1700156.  doi: 10.1002/marc.201700156

    16. [16]

      Wang, H. C.; Li, Q. Y.; Yin, H. B.; Ren, X.; Yao, K.; Zheng, Y.; Xu, Y. X. Synergistic effects of selenophene and extended ladder-type donor units for efficient polymer solar cells. Macromol. Rapid Commun. 2018, 39, 1700483.  doi: 10.1002/marc.201700483

    17. [17]

      Xiao, Z.; Liu, F.; Geng, X.; Zhang, J.; Wang, S.; Xie, Y.; Li, Z.; Yang, H.; Yuan, Y.; Ding, L. A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci. Bull. 2017, 62, 1331−1336.  doi: 10.1016/j.scib.2017.09.017

    18. [18]

      Xu, Y. X.; Chueh, C. C.; Yip, H. L.; Ding, F. Z.; Li, Y. X.; Li, C. Z.; Li, X.; Chen, W. C.; Jen, A. K. Y. Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv. Mater. 2012, 24, 6356−6361.  doi: 10.1002/adma.201203246

    19. [19]

      Zhang, Z. G.; Li, Y. Side-chain engineering of high-efficiency conjugated polymer photovoltaic materials. Sci. China Chem. 2015, 58, 192−209.  doi: 10.1007/s11426-014-5260-2

    20. [20]

      Zhang, M.; Guo, X.; Wang, X.; Wang, H.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem. Mater. 2011, 23, 4264−4270.  doi: 10.1021/cm2019586

    21. [21]

      Zhang, W.; Han, Y.; Zhu, X.; Fei, Z.; Feng, Y.; Treat, N. D.; Faber, H.; Stingelin, N.; McCulloch, I.; Anthopoulos, T. D.; Heeney, M. A novel alkylated indacenodithieno[3,2-b]thiophene-based polymer for high-performance field-effect transistors. Adv. Mater. 2016, 28, 3922−3927.  doi: 10.1002/adma.201504092

    22. [22]

      Zhang, X.; Bronstein, H.; Kronemeijer, A. J.; Smith, J.; Kim, Y.; Kline, R. J.; Richter, L. J.; Anthopoulos, T. D.; Sirringhaus, H.; Song, K.; Heeney, M.; Zhang, W.; McCulloch, I.; DeLongchamp, D. M. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 2013, 4, 2238.  doi: 10.1038/ncomms3238

    23. [23]

      Chochos, C. L.; Katsouras, A.; Gasparini, N.; Koulogiannis, C.; Ameri, T.; Brabec, C. J.; Avgeropoulos, A. Rational design of high-performance wide-bandgap (≈2 eV) polymer semiconductors as electron donors in organic photovoltaics exhibiting high open circuit voltages (≈ 1 V). Macromol. Rapid Commun. 2017, 38, 1600614.  doi: 10.1002/marc.201600614

    24. [24]

      Wang, M.; Cai, D.; Yin, Z.; Chen, S. C.; Du, C. F.; Zheng, Q. Asymmetric-indenothiophene-based copolymers for bulk heterojunction solar cells with 9.14% efficiency. Adv. Mater. 2016, 28, 3359−3365.  doi: 10.1002/adma.201505957

    25. [25]

      Liu, D.; Zhu, Q.; Gu, C.; Wang, J.; Qiu, M.; Chen, W.; Bao, X.; Sun, M.; Yang, R. High-performance photovoltaic polymers employing symmetry-breaking building blocks. Adv. Mater. 2016, 28, 8490−8498.  doi: 10.1002/adma.201602857

    26. [26]

      Bai, W.; Xu, X.; Li, Q.; Xu, Y.; Peng, Q. Efficient nonfullerene polymer solar cells enabled by small-molecular acceptors with a decreased fused-ring core. Small Methods 2018, 2, 1700373.  doi: 10.1002/smtd.201700373

    27. [27]

      Feng, S.; Zhang, C. E.; Liu, Y.; Bi, Z.; Zhang, Z.; Xu, X.; Ma, W.; Bo, Z. Fused-ring acceptors with asymmetric side chains for high-performance thick-film organic solar cells. Adv. Mater. 2017, 29, 1703527.  doi: 10.1002/adma.201703527

    28. [28]

      Cao, J.; Shan, T.; Wang, J. K.; Xu, Y. X.; Ren, X.; Zhong, H. Stereoisomerism of ladder-type acceptor molecules and its effect on photovoltaic properties. Dyes Pigments 2019, 165, 354−360.  doi: 10.1016/j.dyepig.2019.02.046

    29. [29]

      Song, C. E.; Kim, Y. J.; Suranagi, S. R.; Kini, G. P.; Park, S.; Lee, S. K.; Shin, W. S.; Moon, S. J.; Kang, I. N.; Park, C. E.; Lee, J. C. Impact of the crystalline packing structures on charge transport and recombination via alkyl chain tunability of DPP-based small molecules in bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 2016, 8, 12940−12950.  doi: 10.1021/acsami.6b01576

    30. [30]

      Fan, J.; Zhang, Y.; Lang, C.; Qiu, M.; Song, J.; Yang, R.; Guo, F.; Yu, Q.; Wang, J.; Zhao, L. Side chain effect on poly(beznodithiophene-co-dithienobenzoquinoxaline) and their applications for polymer solar cells. Polymer 2016, 82, 228−237.  doi: 10.1016/j.polymer.2015.11.052

    31. [31]

      Liu, X.; Li, Q.; Li, Y.; Gong, X.; Su, S. J.; Cao, Y. Indacenodithiophene core-based small molecules with tunable side chains for solution-processed bulk heterojunction solar cells. J. Mater. Chem. A 2014, 2, 4004−4013.  doi: 10.1039/c3ta14659f

    32. [32]

      Liu, D.; Wang, J.; Gu, C.; Li, Y.; Bao, X.; Yang, R. Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells. Adv. Mater. 2018, 30, 1705870.  doi: 10.1002/adma.201705870

    33. [33]

      Zhu, T.; Wan, Y.; Guo, Z.; Johnson, J.; Huang, L. Two birds with one stone: tailoring singlet fission for both triplet yield and exciton diffusion length. Adv. Mater. 2016, 28, 7539−7547.  doi: 10.1002/adma.201600968

  • 加载中
    1. [1]

      Jiang XindongYue ShuaiChen KepengShao ZhumeiLi ChenSu YajunZhao Jianzhang . Synthesis, properties and application of novel 5, 6, 5, 6-tetracyclic pyrazine/pyrrole-fused unsymmetric bis(BF2) fluorescent dyes: BOPYPYs. Chinese Chemical Letters, 2019, 30(12): 2271-2273. doi: 10.1016/j.cclet.2019.07.027

    2. [2]

      ZHANG ZhongqiangZHANG ShuhuaLIU ZhixiZHANG ZhiguoLI YongfangLI ChangzhiCHEN Hongzheng . A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells. Acta Physico-Chimica Sinica, 2019, 35(4): 394-400. doi: 10.3866/PKU.WHXB201805091

    3. [3]

      GUPTA MonikaYAN DongSHEN FugangXU JianzhongZHAN Chuanlang . Perylenediimide: Phosphonium-Based Binary Blended Small-Molecule Cathode Interlayer for Efficient Fullerene-Free Polymer Solar Cells with Open Circuit Voltage to 1.0 V. Acta Physico-Chimica Sinica, 2019, 35(5): 496-502. doi: 10.3866/PKU.WHXB201805101

    4. [4]

      Zhang QiangLiu JiangangYu XinhongHan Yanchun . Design optimized intermixed phase by tuning polymer-fullerene intercalation for free charge generation. Chinese Chemical Letters, 2019, 30(7): 1405-1409. doi: 10.1016/j.cclet.2019.04.004

    5. [5]

      Liu WenxuLi WeipingYao JiannianZhan Chuanlang . Achieving high short-circuit current and fill-factor via increasing quinoidal character on nonfullerene small molecule acceptor. Chinese Chemical Letters, 2018, 29(3): 381-384. doi: 10.1016/j.cclet.2017.11.018

    6. [6]

      Xiao CHEN QingBin XUE Kong Zhang YANG Qi Zhen ZHANG . STUDIES ON THE AGGRESGATION BEHAVIOUR OF A SIDE-CHAIN LIQUID CRYSTALLINE POLYMER IN LANGMUIR-BLODGETT FILMS. Chinese Chemical Letters, 1996, 7(4): 371-374.

    7. [7]

      LI DanLIANG RanYUE HeWANG PengFU Li-MinZHANG Jian-PingAI Xi-Cheng . Influence of Donor and Acceptor Mass Ratios on P3HT:PCBM Film Structure and Device Performance. Acta Physico-Chimica Sinica, 2012, 28(06): 1373-1379. doi: 10.3866/PKU.WHXB201204061

    8. [8]

      WU NaLUO QunWU Zhen-WuMA Chang-Qi . Influence of Electrode Interfacial Buffer Layers on Thermal Stability of P3HT:PC61BM Solar Cells. Acta Physico-Chimica Sinica, 2015, 31(7): 1413-1420. doi: 10.3866/PKU.WHXB201505142

    9. [9]

      FENG ShiyuLU HaoLIU ZekunLIU YahuiLI CuihongBO Zhishan . Designing a High-Performance A-D-A Fused-Ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups. Acta Physico-Chimica Sinica, 2019, 35(4): 355-360. doi: 10.3866/PKU.WHXB201805161

    10. [10]

      Xian Rong Cai Hao Chen Tao Zhang Xing Xu Ying Li Qing Jiang . Synthesis and characterization of a novel main chain oxadiazole-based copolymer for n-type solar cell material. Chinese Chemical Letters, 2007, 18(11): 1342-1346. doi: 10.1016/j.cclet.2007.09.035

    11. [11]

      Jian LuXiao-Bo TianWei Huang . A new strategy for synthesis of branched cyclic peptide by Asn side-chain hydrazide ligation. Chinese Chemical Letters, 2015, 26(8): 946-950. doi: 10.1016/j.cclet.2015.05.016

    12. [12]

      Jun Hua YU Yu Xiang WENG Xue Song WANG Lei ZHANG Bao Wen ZHANG Yi CAO . Porphyrins in Reverse Micelles:the Side-chain Length and the Triplet-state Lifetime. Chinese Chemical Letters, 2003, 14(8): 844-847.

    13. [13]

      Shu SunJian-Bing ShiYu-Ping DongChen LinXiao-Yu HubLe-Yong Wang . A pillar[5]arene-based side-chain pseudorotaxanes and polypseudorotaxanes as novel fluorescent sensors for the selective detection of halogen ions. Chinese Chemical Letters, 2013, 24(11): 987-992.

    14. [14]

      Hui Zhong XUE Zheng Ming GUO Ai Hua KONG Guo Pci WU Bai Yong MAO Xiu Juan JIANG Zhi Ping GU . THE SYNTHESIS OF UNSYMMETRIC ANALOGS OF GOSSYPOL——6-O-METHYLGOSSYPOL. Chinese Chemical Letters, 1992, 3(3): 165-166.

    15. [15]

      Ji Liang SHI Yuan Chao ZHANG Li Jun XIA Xi Kui JIANG . DO FLAT MOLECULES WITHOUT A SIDE-CHAIN READILY FORM AGGREGATES ? A FLUORESCENCE STUDY OF PYRENE EXCIMER AND EXCIPLEX FORMATION IN ETOH-H2O AND MEOH-H2O SOLVENT SYSTEMS. Chinese Chemical Letters, 1990, 1(2): 149-152.

    16. [16]

      Jia LeiTang QiangLuo MeimingZeng Xiaoming . One-Step Synthesis of Unsymmetric 1, 1'-Biaryl-2, 2'-diamines by the Reaction of 2-Naphthols with Aryl Hydrazines. Chinese Journal of Organic Chemistry, 2018, 38(2): 443-450. doi: 10.6023/cjoc201707018

    17. [17]

      Gui Qiang WANG Rui Feng LIN Miao WANG Chang Neng ZHANG Yuan LIN Xu Rui XIAO Xue Ping LI . Low Sheet Resistance Counter Electrode in Dye-sensitized Solar Cell. Chinese Chemical Letters, 2004, 15(11): 1369-1372.

    18. [18]

      Xiao-Feng LinZi-Yan ZhangZhong-Ke YuanJing LiXiao-Fen XiaoWei HongXu-Dong ChenDing-Shan Yu . Graphene-based materials for polymer solar cells. Chinese Chemical Letters, 2016, 27(8): 1259-1270. doi: 10.1016/j.cclet.2016.06.041

Metrics
  • PDF Downloads(0)
  • Abstract views(86)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return