Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods

Si-Qi Teng Zhi-Guo Jiang Zhao-Bin Qiu

Citation:  Si-Qi Teng, Zhi-Guo Jiang, Zhao-Bin Qiu. Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods[J]. Chinese Journal of Polymer Science, 2020, 38(2): 158-163. doi: 10.1007/s10118-020-2338-5 shu

Crystallization Behavior and Dynamic Mechanical Properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes Composites Prepared via Different Methods


    1. [1]

      Woodruff, M. A.; Hutmacher, D. W. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217−1256. doi: 10.1016/j.progpolymsci.2010.04.002

    2. [2]

      Dash, T. K.; Konkimalla, V. B. Poly-ε-caprolactone based formulations for drug delivery and tissue engineering: a review. J. Control. Release 2012, 158, 15−33. doi: 10.1016/j.jconrel.2011.09.064

    3. [3]

      Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003, 24, 2077−2082. doi: 10.1016/S0142-9612(02)00635-X

    4. [4]

      Kumari, A.; Yadav, S. K.; Yadav, S. C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B 2010, 75, 1−18. doi: 10.1016/j.colsurfb.2009.09.001

    5. [5]

      Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2004, 24, 801−808.

    6. [6]

      Sun, H. F.; Mei, L.; Song, C. X.; Cui, X. M.; Wang, P. Y. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 2006, 27, 1735−1740. doi: 10.1016/j.biomaterials.2005.09.019

    7. [7]

      Ahmed, J.; Luciano, G.; Schizzi, I.; Arfat, Y. A.; Maggiore, S.; Thai, T. L. A. Non-isothermal crystallization behavior, rheological properties and morphology of poly(ε-caprolactone)/graphene oxide nanosheets composite films. Thermochim. Acta 2018, 659, 96−104. doi: 10.1016/j.tca.2017.11.009

    8. [8]

      Benhacine, F.; Hadj-Hamou, A. S.; Habi, A. Development of long-term antimicrobial poly(ε-caprolactone)/silver exchanged montmorillonite nanocomposite films with silver ion release property for active packaging use. Polym. Bull. 2016, 73, 1207−1227. doi: 10.1007/s00289-015-1543-9

    9. [9]

      Deng, S.; Ma, J. R.; Guo, Y. L.; Chen, F.; Fu, Q. One-step modification and nanofibrillation of microfibrillated cellulose for simultaneously reinforcing and toughening of poly(ε-caprolactone). Compos. Sci. Technol. 2018, 157, 168−177. doi: 10.1016/j.compscitech.2017.10.029

    10. [10]

      Fadaie, M.; Mirzaei, E.; Geramizadeh, B.; Asvar, Z. Incorporation of nanofibrillated chitosan into electrospun PCL nanofibers makes scaffolds with enhanced mechanical and biological properties. Carbohyd. Polym. 2018, 199, 628−640. doi: 10.1016/j.carbpol.2018.07.061

    11. [11]

      Gumede, T. P.; Luyt, A. S.; Hassan, M. K.; Perez-Camargo, R. A.; Tercjak, A.; Muller, A. J. Morphology, nucleation, and isothermal crystallization kinetics of poly(ε-caprolactone) mixed with a polycarbonate/MWCNTs masterbatch. Polymers 2017, 9, 709−734. doi: 10.3390/polym9120709

    12. [12]

      Kong, J.; Yu, Y.; Pei, X.; Han, C.; Tan, Y.; Dong, L. Polycaprolactone nanocomposite reinforced by bioresource starch-based nanoparticles. Int. J. Biol. Macromol. 2017, 102, 1304−1311. doi: 10.1016/j.ijbiomac.2017.05.019

    13. [13]

      Saeed, K.; Park, S. Y.; Lee, H. J.; Baek, J. B.; Huh, W. S. Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite. Polymer 2006, 47, 8019−8025. doi: 10.1016/j.polymer.2006.09.012

    14. [14]

      Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev. 2010, 110, 2081−2173. doi: 10.1021/cr900201r

    15. [15]

      Phillips, S.; Haddad, T.; Tomczak, S. Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Curr. Opin. Solid State Mater. Sci. 2004, 8, 21−29. doi: 10.1016/j.cossms.2004.03.002

    16. [16]

      Kuo, S. W.; Chang, F. C. POSS related polymer nanocomposites. Prog. Polym. Sci. 2011, 36, 1649−1696. doi: 10.1016/j.progpolymsci.2011.05.002

    17. [17]

      Wu, J.; Mather, P. T. POSS polymers: physical properties and biomaterials applications. Polym. Rev. 2009, 49, 25−63. doi: 10.1080/15583720802656237

    18. [18]

      Guan, W.; Qiu, Z. B. Isothermal crystallization kinetics, morphology, and dynamic mechanical properties of biodegradable poly(ε-caprolactone) and octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind. Eng. Chem. Res. 2012, 51, 3203−3208. doi: 10.1021/ie202802d

    19. [19]

      Pan, H.; Yu, J.; Qiu, Z. B. Crystallization and morphology studies of biodegradable poly(ε-caprolactone)/polyhedral oligomeric silsesquioxanes nanocomposites. Polym. Eng. Sci. 2011, 51, 2159−2165. doi: 10.1002/pen.v51.11

    20. [20]

      Liu, W.; He, S.; Zhou, H. Effect of octa(epoxycyclohexyl) POSS on thermal, rheology property, and foaming behavior of PLA composites. J. Appl. Polym. Sci. 2018, 135, 46399. doi: 10.1002/app.v135.25

    21. [21]

      Yu, J.; Qiu, Z. B. Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl. Mater. Interfaces 2011, 3, 890−897. doi: 10.1021/am1012485

    22. [22]

      Choi, J. H.; Jung, C. H.; Kang, D. W.; Hwang, I. T.; Choi, J. H. Preparation and characterization of crosslinked poly(ε-caprolactone)/polyhedral oligomeric silsesquioxane nanocomposites by electron beam irradiation. Nucl. Instrum. Meth. B 2012, 287, 141−147. doi: 10.1016/j.nimb.2012.07.006

    23. [23]

      Teng, S. Q.; Jiang, Z. G.; Qiu, Z. B. Effect of different POSS structures on the crystallization behavior and dynamic mechanical properties of biodegradable poly(ethylene succinate). Polymer 2019, 163, 68−73. doi: 10.1016/j.polymer.2018.12.061

    24. [24]

      Avrami, M. Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 1940, 8, 212−224. doi: 10.1063/1.1750631

    25. [25]

      Avrami, M. Granulation, phase change, and microstructure kinetics of phase change. III. J. Chem. Phys. 1941, 9, 177−184. doi: 10.1063/1.1750872

    26. [26]

      Wunderlich, B. Macromolecular physics, Vol. 2, Academic Press, New York, 1976.

    27. [27]

      Bassindale, A. R.; Liu, Z.H.; MacKinnon, I. A.; Taylor, P. G.; Yang, Y. X.; Light, M. E.; Horton, P. N.; Hursthouse, M. B. A higher yielding route for T8 silsesquioxane cages and X-ray crystal structures of some novel spherosilicates. Dalton Trans. 2003, 14, 2945−2949.

    28. [28]

      Eastmond, G. Poly(ε-caprolactone) blends. Adv. Polym. Sci. 1999, 149, 59−223. doi: 10.1007/3-540-48838-3

    29. [29]

      Chen, B. Q.; Sun, K. Poly(ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym. Test. 2005, 24, 64−70. doi: 10.1016/j.polymertesting.2004.07.010

    30. [30]

      Chen, B. Q.; Sun, K.; Ren, T. Mechanical and viscoelastic properties of chitin fiber reinforced poly(ε-caprolactone). Eur. Polym. J. 2005, 41, 453−457. doi: 10.1016/j.eurpolymj.2004.10.015

  • 加载中
  • PDF下载量:  0
  • 文章访问数:  603
  • HTML全文浏览量:  23
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-04-28
  • 修回日期:  2019-06-25
  • 网络出版日期:  2019-10-10
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索