Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers

Meng-Qi Du Yu-Zheng Peng Yuan-Chi Ma Li Yang Yuan-Lin Zhou Fan-Kun Zeng Xiang-Ke Wang Man-Ling Song Guan-Jun Chang

Citation:  Meng-Qi Du, Yu-Zheng Peng, Yuan-Chi Ma, Li Yang, Yuan-Lin Zhou, Fan-Kun Zeng, Xiang-Ke Wang, Man-Ling Song, Guan-Jun Chang. Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers[J]. Chinese Journal of Polymer Science, 2020, 38(2): 187-194. doi: 10.1007/s10118-019-2326-9 shu

Selective Carbon Dioxide Capture in Antifouling Indole-based Microporous Organic Polymers


    1. [1]

      Tian, K.; Zhu, T. T.; Lan, P.; Wu, Z. C.; Hu, W.; Xie, F. F.; Li, L. Massive preparation of coumarone-indene resin-based hyper-crosslinked polymers for gas adsorption. Chinese J. Polym. Sci. 2018, 36, 1168−1174. doi: 10.1007/s10118-018-2127-6

    2. [2]

      Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 2012, 484, 49−54. doi: 10.1038/nature10915

    3. [3]

      Gan, C. J.; Xu, X. C.; Jiang, X. W.; Gan, F.; Dong, J.; Zhao, X.; Zhang, Q. H. Fabrication of 6FDA-HFBAPP polyimide asymmetric hollow fiber membranes and their CO2/CH4 separation properties. Chinese J. Polym. Sci. 2019, 37, 815−826.

    4. [4]

      Zhou, Z.; Anderson, C. M.; Butler, S. K.; Thompson, S. K.; Whitty, K. J.; Shen, T.; Stowers, K. J. Stability and efficiency of CO2 capture using linear amine polymer modified carbon nanotubes. J. Mater. Chem. A 2017, 5, 10486−10494. doi: 10.1039/C7TA02576A

    5. [5]

      DeConto, R. M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591−597. doi: 10.1038/nature17145

    6. [6]

      Wei, W.; Chang, G.; Xu, Y.; Yang, L. An indole-based conjugated microporous polymer: A new and stable lithium storage anode with high capacity and long life induced by cation-π interactions and a N-rich aromatic structure. J. Mater. Chem. A 2018, 6, 18794−18798. doi: 10.1039/C8TA06194G

    7. [7]

      Wang, K.; Yang, L.; Wei, W.; Zhang, L.; Chang, G. Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. J. Membr. Sci. 2018, 549, 23−27. doi: 10.1016/j.memsci.2017.11.067

    8. [8]

      Xiang, S.; He, Y.; Zhang, Z.; Wu, H.; Zhou, W.; Krishna, R.; Chen, B. Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions. Nat. Commun. 2012, 3, 954−962. doi: 10.1038/ncomms1956

    9. [9]

      Wang, R.; Moreno-Cruz, J.; Caldeira, K. Will the use of a carbon tax for revenue generation produce an incentive to continue carbon emissions? Environ. Res. Lett. 2017, 12, 6−14.

    10. [10]

      Chang, G.; Shang, Z.; Yu, T.; Yang, L. Rational design of a novel indole-based microporous organic polymer: enhanced carbon dioxide uptake via local dipole-π interactions. J. Mater. Chem. A 2016, 4, 2517−2523. doi: 10.1039/C5TA08705H

    11. [11]

      Lee, H. M.; Youn, I. S.; Saleh, M.; Lee, J. W.; Kim, K. S. Interactions of CO2 with various functional molecules. Phys. Chem. Chem. Phys. 2015, 17, 10925−10933. doi: 10.1039/C5CP00673B

    12. [12]

      Chang, G.; Xu, Y.; Zhang, L.; Yang, L. Enhanced carbon dioxide capture in an indole-based microporous organic polymer via synergistic effects of indoles and their adjacent carbonyl groups. Polym. Chem. 2018, 9, 4455−4459. doi: 10.1039/C8PY00936H

    13. [13]

      Yang, L.; Chang, G.; Wang, D. High and selective carbon dioxide capture in nitrogen-containing aerogels via synergistic effects of electrostatic in-plane and dispersive π-π-stacking interactions. ACS Appl. Mater. Interfaces 2017, 9, 15213−15218. doi: 10.1021/acsami.7b02077

    14. [14]

      Rabbani, M. G.; Reich, T. E.; Kassab, R. M.; Jackson, K. T.; El-Kaderi, H. M. High CO2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers. Chem. Commun. 2012, 48, 1141−1143. doi: 10.1039/C2CC16986J

    15. [15]

      Saleh, M.; Lee, H. M.; Kemp, K. C.; Kim, K. S. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers. ACS Appl. Mater. Interfaces 2014, 6, 7325−7333. doi: 10.1021/am500728q

    16. [16]

      Islamoglu, T.; Behera, S.; Kahveci, Z.; Tessema, T. D.; Jena, P.; El-Kaderi, H. M. Enhanced carbon dioxide capture from landfill gas using bifunctionalized benzimidazole-linked polymers. ACS Appl. Mater. Interfaces 2016, 8, 14648−14655. doi: 10.1021/acsami.6b05326

    17. [17]

      Bazaka, K.; Jacob, M. V.; Crawford, R. J.; Ivanova, E. P. Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl. Microbiol. Biot. 2012, 95, 299−311. doi: 10.1007/s00253-012-4144-7

    18. [18]

      Arciola, C. R.; Campoccia, D.; Speziale, P.; Montanaro, L.; Costerton, J. W. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012, 33, 5967−5982.

    19. [19]

      Hasan, J.; Crawford, R. J.; Ivanova, E. P. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013, 31, 295−304. doi: 10.1016/j.tibtech.2013.01.017

    20. [20]

      Chen, M.; Wang, K.; Wang, C. Antifouling indole alkaloids of a marine-derived fungus Eurotium sp. Chem. Nat. Compd. 2018, 54, 207−209. doi: 10.1007/s10600-018-2301-7

    21. [21]

      Fang, K.; Li, X.; Yu, L. Synthesis, antibacterial activity, and application in the antifouling marine coatings of novel acylamino compounds containing gramine groups. Prog. Org. Coat. 2018, 118, 141−147. doi: 10.1016/j.porgcoat.2017.10.027

    22. [22]

      Feng, D.; He, J.; Chen, S.; Su, P.; Ke, C.; Wang, W. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: laboratory bioassays and field trials. Mar. Biotechnol. 2018, 20, 623−638. doi: 10.1007/s10126-018-9834-4

    23. [23]

      Qi, S.; Ma, X. Antifouling compounds from marine invertebrates. Mar. Drugs 2017, 15, 263−282. doi: 10.3390/md15090263

    24. [24]

      Guchhait, S. K.; Kashyap, M.; Kamble, H. ZrCl4-mediated regio- and chemoselective Friedel-Crafts acylation of indole. J. Org. Chem. 2011, 76, 4753−4758. doi: 10.1021/jo200561f

    25. [25]

      Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011, 44, 2410−2414. doi: 10.1021/ma200630s

    26. [26]

      Saleh, M.; Baek, S. B.; Lee, H. M.; Kim, K. S. Triazine-based microporous polymers for selective adsorption of CO2. J. Phys. Chem. C 2015, 119, 5395−5402. doi: 10.1021/jp509188h

    27. [27]

      Vishnyakov, A.; Ravikovitch, P. I.; Neimark, A. V. Molecular level models for CO2 sorption in nanopores. Langmuir 1999, 15, 8736−8742. doi: 10.1021/la990726c

    28. [28]

      Yang, P.; Yang, L.; Yang, J.; Luo, X.; Chang, G. Synthesis of a metal-coordinated N-substituted polybenzimidazole pyridine sulfone and method for the nondestructive analysis of thermal stability. High Perform. Polym. 2019, 31, 238−246. doi: 10.1177/0954008318761109

    29. [29]

      Kizzie, A. C.; Wong-Foy, A. G.; Matzger, A. J. Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 2011, 27, 6368−6373. doi: 10.1021/la200547k

    30. [30]

      Liu, J.; Tian, J.; Thallapally, P. K.; McGrail, B. P. Selective CO2 capture from flue gas using metal-organic frameworks—a fixed bed study. J. Phys. Chem. C 2012, 116, 9575−9581. doi: 10.1021/jp300961j

    31. [31]

      Song, G.; Zhu, X.; Chen, R.; Liao, Q.; Ding, Y. D.; Chen, L. An investigation of CO2 adsorption kinetics on porous magnesium oxide. Chem. Eng. J. 2016, 283, 175−183. doi: 10.1016/j.cej.2015.07.055

    32. [32]

      Lehn, J. M. Supramolecular polymer chemistry—scope and perspectives. Polym. Int. 2002, 51, 825−839. doi: 10.1002/(ISSN)1097-0126

    33. [33]

      Lehn, J. M. Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 2005, 30, 814−831. doi: 10.1016/j.progpolymsci.2005.06.002

    34. [34]

      Fox, J. D.; Rowan, S. J. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules 2009, 42, 6823−6835. doi: 10.1021/ma901144t

    35. [35]

      Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Supramolecular polymers. Chem. Rev. 2001, 101, 4071−4098. doi: 10.1021/cr990125q

    36. [36]

      Balzer, C.; Cimino, R. T.; Gor, G. Y.; Neimark, A. V.; Reichenauer, G. Deformation of microporous carbons during N2, Ar, and CO2 adsorption: Insight from the density functional theory. Langmuir 2016, 32, 8265−8274. doi: 10.1021/acs.langmuir.6b02036

    37. [37]

      Yang, P.; Yang, L.; Wang, Y.; Song, L.; Yang, J.; Chang, G. An indole-based aerogel for enhanced removal of heavy metals from water via the synergistic effects of complexation and cation-π interactions. J. Mater. Chem. A 2019, 7, 531−539. doi: 10.1039/C8TA07326K

    38. [38]

      Wu, Q.; Chen, G.; Sun, W.; Xu, Z.; Kong, Y.; Zheng, X.; Xu, S. Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance. Chem. Eng. J. 2017, 313, 450−460. doi: 10.1016/j.cej.2016.12.079

    39. [39]

      Xie, Y.; Tang, C.; Wang, Z.; Xu, Y.; Zhao, W.; Sun, S.; Zhao, C. Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. J. Mater. Chem. B 2017, 5, 7186−7193. doi: 10.1039/C7TB01516J

    40. [40]

      Zhang, X.; Shu, Y.; Su, S.; Zhu, J. One-step coagulation to construct durable anti-fouling and antibacterial cellulose film exploiting Ag@AgCl nanoparticle-triggered photo-catalytic degradation. Carbohyd. Polym. 2018, 181, 499−505. doi: 10.1016/j.carbpol.2017.10.041

    41. [41]

      Zhang, X.; Zhang, J.; Yu, J.; Zhang, Y.; Cui, Z.; Sun, Y.; Hou, B. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl. Catal. B-Environ. 2018, 220, 57−66. doi: 10.1016/j.apcatb.2017.07.074

    42. [42]

      Samantaray, P. K.; Madras, G.; Bose, S. PVDF/PBSA membranes with strongly coupled phosphonium derivatives and graphene oxide on the surface towards antibacterial and antifouling activities. J. Membr. Sci. 2018, 548, 203−214. doi: 10.1016/j.memsci.2017.11.018

    43. [43]

      Bindhu, M. R.; Umadevi, M. Antibacterial and catalytic activities of green synthesized silver nanoparticles. Spectrochimica Acta Part A 2015, 135, 373−378. doi: 10.1016/j.saa.2014.07.045

  • 加载中
  • PDF下载量:  0
  • 文章访问数:  587
  • HTML全文浏览量:  21
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-05-25
  • 修回日期:  2019-06-29
  • 网络出版日期:  2019-09-29
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索