Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes

Wang Du De-Teng Zhang Xue-Mei Wang Tan-Chen Ren Chang-You Gao

Citation:  Wang Du, De-Teng Zhang, Xue-Mei Wang, Tan-Chen Ren, Chang-You Gao. Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes[J]. Chinese Journal of Polymer Science, 2020, 38(2): 126-136. doi: 10.1007/s10118-019-2324-y shu

Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes

English


    1. [1]

      Ermis, M.; Antmen, E.; Hasirci, V. Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: A review from the tissue engineering perspective. Bioact. Mater. 2018, 3, 355−369. doi: 10.1016/j.bioactmat.2018.05.005

    2. [2]

      Byron, A.; Morgan, M. R.; Humphries, M. J. Adhesion signalling complexes. Curr. Biol. 2010, 20, R1063−R1067. doi: 10.1016/j.cub.2010.10.059

    3. [3]

      Geiger, B.; Spatz, J. P.; Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Microbiol. 2009, 10, 21−33. doi: 10.1038/nrm2593

    4. [4]

      Zamani, M.; Prabhakaran, M. P.; Thian, E. S.; Ramakrishna, S. Controlled delivery of stromal derived factor-1α from poly(lactic-co-glycolic acid) core-shell particles to recruit mesenchymal stem cells for cardiac regeneration. J. Colloid Interface Sci. 2015, 451, 144−152. doi: 10.1016/j.jcis.2015.04.005

    5. [5]

      Yan, C.; Sun, J.; Ding, J. D. Critical areas of cell adhesion on micropatterned surfaces. Biomaterials 2011, 32, 3931−3938. doi: 10.1016/j.biomaterials.2011.01.078

    6. [6]

      Okuyama, H.; Krishnamachary, B.; Zhou, Y. F.; Nagasawa, H.; Bosch-Marce, M.; Semenza, G. L. Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1. J. Biol. Chem. 2006, 281, 15554−15563. doi: 10.1074/jbc.M602003200

    7. [7]

      Wu, C. T.; Chang, J.; Zhai, W. Y.; Ni, S. Y.; Wang, J. Y. Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. B 2006, 78B, 47−55. doi: 10.1002/(ISSN)1552-4981

    8. [8]

      Charras, G.; Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Microbiol. 2014, 15, 813−824. doi: 10.1038/nrm3897

    9. [9]

      Chan, C. E.; Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 2008, 322, 1687−1691. doi: 10.1126/science.1163595

    10. [10]

      Shabbir, S. H.; Eisenberg, J. L.; Mrksich, M. An inhibitor of a cell adhesion receptor stimulates cell Migration. Angew. Chem. Int. Ed. 2010, 49, 7706−7709. doi: 10.1002/anie.v49:42

    11. [11]

      Wu, J. D.; Mao, Z. W.; Gao, C. Y. Controlling the migration behaviors of vascular smooth muscle cells by methoxy poly(ethylene glycol) brushes of different molecular weight and density. Biomaterials 2012, 33, 810−820. doi: 10.1016/j.biomaterials.2011.10.022

    12. [12]

      Biazar, E.; Khorasani, M. T.; Joupari, M. D. Cell adhesion and surface properties of polystyrene surfaces grafted with poly(N-isopropylacrylamide). Chinese J. Polym Sci. 2013, 31, 1509−1518. doi: 10.1007/s10118-013-1335-3

    13. [13]

      Cao, Z. Q.; Bian, Q.; Chen, Y.; Liang, F. X.; Wang, G. J. Light-responsive Janus-particle-based coatings for cell capture and release. ACS Macro Lett. 2017, 6, 1124−1128. doi: 10.1021/acsmacrolett.7b00714

    14. [14]

      Chen, Y. H.; Chang, S. H.; Wang, T. J.; Wang, I.; Young, T. H. Cell fractionation on pH-responsive chitosan surface. Biomaterials 2013, 34, 854−863. doi: 10.1016/j.biomaterials.2012.10.014

    15. [15]

      Xiao, Y.; Zhou, H. Y.; Xuan, N. X.; Cheng, M.; Rao, Y. F.; Luo, Y.; Wang, B.; Tang, R. Effective and selective cell retention and recovery from whole blood by electroactive thin films. ACS Appl. Mater. Interfaces 2014, 6, 20804−20811. doi: 10.1021/am505072z

    16. [16]

      Liu, H. Y.; Korc, M.; Lin, C. C. Biomimetic and enzyme-responsive dynamic hydrogels for studying cell-matrix interactions in pancreatic ductal adenocarcinoma. Biomaterials 2018, 160, 24−36. doi: 10.1016/j.biomaterials.2018.01.012

    17. [17]

      Costa, P.; Gautrot, J. E.; Connelly, J. T. Directing cell migration using micropatterned and dynamically adhesive polymer brushes. Acta Biomater. 2014, 10, 2415−2422. doi: 10.1016/j.actbio.2014.01.029

    18. [18]

      Boekhoven, J.; Perez, C. M. R.; Sur, S.; Worthy, A.; Stupp, S. I. Dynamic display of bioactivity through host-guest chemistry. Angew. Chem. Int. Ed. 2013, 52, 12077−12080. doi: 10.1002/anie.201306278

    19. [19]

      Voskuhl, J.; Sankaran, S.; Jonkheijm, P. Optical control over bioactive ligands at supramolecular surfaces. Chem. Commun. 2014, 50, 15144−15147. doi: 10.1039/C4CC03184A

    20. [20]

      Gong, Y. H.; Li, C.; Yang, J.; Wang, H. Y.; Zhuo, R. X.; Zhang, X. Z. Photoresponsive "smart template" via host-guest interaction for reversible cell adhesion. Macromolecules 2011, 44, 7499−7502. doi: 10.1021/ma201676w

    21. [21]

      Deng, J.; Liu, X. Y.; Shi, W. B.; Cheng, C.; He, C.; Zhao, C. S. Light-triggered switching of reversible and alterable biofunctionality via β-cyclodextrin/azobenzene-based host-guest interaction. ACS Macro Lett. 2014, 3, 1130−1133. doi: 10.1021/mz500568k

    22. [22]

      Bian, Q.; Wang, W.; Wang, S.; Wang, G. Light-triggered specific cancer cell release from cyclodextrin/azobenzene and aptamer-modified substrate. ACS Appl. Mater. Interfaces 2016, 8, 27360−27367. doi: 10.1021/acsami.6b09734

    23. [23]

      Gu, L. Q.; Braha, O.; Conlan, S.; Cheley, S.; Bayley, H. Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter. Nature 1999, 398, 686−690. doi: 10.1038/19491

    24. [24]

      Cheng, M. J.; Shi, F.; Li, J. S.; Lin, Z. F.; Jiang, C.; Xiao, M.; Zhang, L. Q.; Yang, W. T.; Nishi, T. Macroscopic supramolecular assembly of rigid building blocks through a flexible spacing coating. Adv. Mater. 2014, 26, 3009−3013. doi: 10.1002/adma.201305177

    25. [25]

      Khan, M.; Yang, J.; Shi, C. C.; Lv, J.; Feng, Y. K.; Zhang, W. C. Surface tailoring for selective endothelialization and platelet inhibition via a combination of SI-ATRP and click chemistry using Cys-Ala-Gly-peptide. Acta Biomater. 2015, 20, 69−81. doi: 10.1016/j.actbio.2015.03.032

    26. [26]

      Ren, T. C.; Yu, S.; Mao, Z. W.; Gao, C. Y. A complementary density gradient of zwitterionic polymer brushes and NCAM peptides for selectively controlling directional migration of schwann cells. Biomaterials 2015, 56, 58−67. doi: 10.1016/j.biomaterials.2015.03.052

    27. [27]

      Ji, Y.; Wei, Y.; Liu, X. S.; Wang, J. L.; Ren, K. F.; Ji, J. Zwitterionic polycarboxybetaine coating functionalized with REDV peptide to improve selectivity for endothelial cells. J. Biomed. Mater. Res. A 2012, 100A, 1387−1397. doi: 10.1002/jbm.a.v100a.6

    28. [28]

      Zheng, X. W.; Pan, X.; Pang, Q.; Shuai, C. A.; Ma, L.; Gao, C. Y. Selective capture of mesenchymal stem cells over fibroblasts and immune cells on E7-modified collagen substrates under flow circumstances. J. Mater. Chem. B 2018, 6, 165−173. doi: 10.1039/C7TB02812A

    29. [29]

      Man, Z. T.; Yin, L.; Shao, Z. X.; Zhang, X.; Hu, X. Q.; Zhu, J. X.; Dai, L. H.; Huang, H. J.; Yuan, L.; Zhou, C. Y. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials 2014, 35, 5250−5260. doi: 10.1016/j.biomaterials.2014.03.031

    30. [30]

      Shao, Z. X.; Zhang, X.; Pi, Y. B.; Wang, X. K.; Jia, Z. Q.; Zhu, J. X.; Dai, L. H.; Chen, W. Q.; Yin, L.; Chen, H. F. Polycaprolactone electrospun mesh conjugated with an MSC affinity peptide for MSC homing in vivo. Biomaterials 2012, 33, 3375−3387. doi: 10.1016/j.biomaterials.2012.01.033

    31. [31]

      Yang, M.; Chu, L. Y.; Wang, H. D.; Xie, R.; Song, H.; Niu, C. H. A thermoresponsive membrane for chiral resolution. Adv. Funct. Mater. 2008, 18, 652−663. doi: 10.1002/(ISSN)1616-3028

    32. [32]

      Tugulu, S.; Arnold, A.; Sielaff, I.; Johnsson, K.; Klok, H. A. Protein-functionalized polymer brushes. Biomacromolecules 2005, 6, 1602−1607. doi: 10.1021/bm050016n

    33. [33]

      Ren, T. C.; Mao, Z. W.; Guo, J.; Gao, C. Y. Directional migration of vascular smooth muscle cells guided by a molecule weight gradient of poly(2-hydroxyethyl methacrylate) brushes. Langmuir 2013, 29, 6386−6395. doi: 10.1021/la4004609

    34. [34]

      Ren, T. C.; Mao, Z. W.; Moya, S. E.; Gao, C. Y. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes. Chem. Asian J. 2014, 9, 2132−2139. doi: 10.1002/asia.v9.8

    35. [35]

      Huang, S.; Xu, L. L.; Sun, Y. X.; Wu, T. Y.; Wang, K. X.; Li, G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J. Orthop. Transl. 2015, 3, 26−33. doi: 10.1016/j.jot.2014.07.005

    36. [36]

      Li, X.; Wang, M. M.; Wang, L.; Shi, X. J.; Xu, Y. J.; Song, B.; Chen, H. Block copolymer modified surfaces for conjugation of biomacromolecules with control of quantity and activity. Langmuir 2013, 29, 1122−1128. doi: 10.1021/la3044472

    37. [37]

      Yan, S.; Wang, Z. N.; Gao, X. L.; Gao, C. J. Antifouling PVDF ultrafiltration membranes incorporating PVDF-g-PHEMA additive via atom transfer radical graft polymerizations. J. Membr. Sci. 2012, 413-414, 38−47. doi: 10.1016/j.memsci.2012.03.055

    38. [38]

      Zhu, L. J.; Zhu, L. P.; Jiang, J. H.; Yi, Z.; Zhao, Y. F.; Zhu, B. K.; Xu, Y. Y. Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive. J. Membr. Sci. 2014, 451, 157−168. doi: 10.1016/j.memsci.2013.09.053

    39. [39]

      Barbey, R.; Klok, H. Room temperature, aqueous post-polymerization modification of glycidyl methacrylate-containing polymer brushes prepared via surface-initiated atom transfer radical polymerization. Langmuir 2010, 26, 18219−18230. doi: 10.1021/la102400z

    40. [40]

      Kim, M.; Lee, B.; Yang, K.; Park, J.; Jeon, S.; Um, S. H.; Kim, D.; Im, S. G.; Cho, S. BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials 2013, 34, 7236−7246. doi: 10.1016/j.biomaterials.2013.06.019

    41. [41]

      Zhou, W. F.; Yang, M.; Zhao, Z.; Li, S. P.; Cheng, Z. Q.; Zhu, J. S. Controlled hierarchical architecture in poly[oligo(ethylene glycol) methacrylate-b-glycidyl methacrylate] brushes for enhanced label-free biosensing. Appl. Surf. Sci. 2018, 450, 236−243. doi: 10.1016/j.apsusc.2018.04.183

    42. [42]

      Hu, W. H.; Liu, Y. S.; Lu, Z. S.; Li, C. M. Poly[oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate] brush substrate for sensitive surface plasmon resonance imaging protein arrays. Adv. Funct. Mater. 2010, 20, 3497−3503. doi: 10.1002/adfm.v20:20

    43. [43]

      Lei, Z.; Gao, J. X.; Liu, X.; Liu, D. J.; Wang, Z. X. Poly(glycidyl methacrylate-co-2-hydroxyethyl methacrylate) brushes as peptide/protein microarray substrate for improving protein binding and functionality. ACS Appl. Mater. Interfaces 2016, 8, 10174−10182. doi: 10.1021/acsami.6b01156

    44. [44]

      Wu, S.; Du, W.; Duan, Y. Y.; Zhang, D. T.; Liu, Y. X.; Wu, B. B.; Zou, X. H.; Ouyang, H. W.; Gao, C. Y. Regulating the migration of smooth muscle cells by a vertically distributed poly(2-hydroxyethyl methacrylate) gradient on polymer brushes covalently immobilized with RGD peptides. Acta Biomater. 2018, 75, 75−92. doi: 10.1016/j.actbio.2018.05.046

    45. [45]

      Dehghani, E. S.; Spencer, N. D.; Ramakrishna, S. N.; Benetti, E. M. Crosslinking polymer brushes with ethylene glycol-containing segments: influence on physicochemical and antifouling properties. Langmuir 2016, 32, 10317−10327. doi: 10.1021/acs.langmuir.6b02958

    46. [46]

      Mandal, J.; Varunprasaath, R. S.; Yan, W.; Divandari, M.; Spencer, N. D.; Dubner, M. In situ monitoring of SI-ATRP throughout multiple reinitiations under flow by means of a quartz crystal microbalance. RSC Adv. 2018, 8, 20048−20055. doi: 10.1039/C8RA03073A

    47. [47]

      Fuhrmann, I.; Karger-Kocsis, J. Photoinitiated grafting of glycidyl methacrylate and methacrylic acid on ground tire rubber. J. Appl. Polym. Sci. 2003, 89, 1622−1630. doi: 10.1002/(ISSN)1097-4628

    48. [48]

      Tabata, Y. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 2009, 63, S311−S324. doi: 10.1098/rsif.2008.0448.focus

    49. [49]

      Ren, T. C.; Ni, Y. L.; Du, W.; Yu, S.; Mao, Z.; Gao, C. Y. Dual responsive surfaces based on host-guest interaction for dynamic mediation of cell-substrate interaction and cell migration. Adv. Mater. Interfaces 2017, 4, 1500865. doi: 10.1002/admi.201500865

    50. [50]

      Lauffenburger, D. A.; Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 1996, 84, 359−369. doi: 10.1016/S0092-8674(00)81280-5

    51. [51]

      Dimilla, P. A.; Stone, J. A.; Quinn, J. A.; Albelda, S. M.; Lauffenburger, D. A. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Bio. 1993, 122, 729−737. doi: 10.1083/jcb.122.3.729

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  568
  • HTML全文浏览量:  13
文章相关
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-05-26
  • 修回日期:  2019-06-15
  • 网络出版日期:  2019-09-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章