Truxene-based Conjugated Microporous Polymers via Different Synthetic Methods

Meng-Yang Wang Qiu-Jing Zhang Qiao-Qiao Shen Qing-Yin Li Shi-Jie Ren

Citation:  Meng-Yang Wang, Qiu-Jing Zhang, Qiao-Qiao Shen, Qing-Yin Li, Shi-Jie Ren. Truxene-based Conjugated Microporous Polymers via Different Synthetic Methods[J]. Chinese Journal of Polymer Science, 2020, 38(2): 151-157. doi: 10.1007/s10118-019-2321-1 shu

Truxene-based Conjugated Microporous Polymers via Different Synthetic Methods

English


    1. [1]

      McKeown, N. B.; Gahnem, B.; Msayib, K. J.; Budd, P. M.; Tattershall, C. E.; Mahmood, K.; Tan, S.; Book, D.; Langmi, H. W.; Walton, A. Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. Angew. Chem. Int. Ed. 2006, 45, 1804−1807. doi: 10.1002/(ISSN)1521-3773

    2. [2]

      El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268−272. doi: 10.1126/science.1139915

    3. [3]

      Wang, T. Q.; Xu, Y.; He, Z. D.; Zhou, M. H.; Huang, K. Microporous organic nanotube networks from hyper cross-linking core-shell bottlebrush copolymers for selective adsorption study. Chinese J. Polym. Sci. 2018, 36, 98−105. doi: 10.1007/s10118-018-2007-0

    4. [4]

      Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 2009, 48, 9457−9460. doi: 10.1002/anie.200904637

    5. [5]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46, 8574−8578. doi: 10.1002/anie.v46:45

    6. [6]

      Chen, L.; Yang, Y.; Jiang, D. CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 2010, 132, 9138. doi: 10.1021/ja1028556

    7. [7]

      Jiang, J. X.; Li, Y.; Wu, X.; Xiao, J.; Adams, D. J.; Cooper, A. I. Conjugated microporous polymers with rose bengal dye for highly efficient heterogeneous organo-photocatalysis. Macromolecules 2013, 46, 8779−8783. doi: 10.1021/ma402104h

    8. [8]

      Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. Angew. Chem. Int. Ed. 2011, 50, 8753−8757. doi: 10.1002/anie.201103493

    9. [9]

      Liu, X.; Xu, Y.; Jiang, D. Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. J. Am. Chem. Soc. 2012, 134, 8738−8741. doi: 10.1021/ja303448r

    10. [10]

      Guo, L.; Cao, D. Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives. J. Mater. Chem. C 2015, 3, 8490−8494. doi: 10.1039/C5TC01649E

    11. [11]

      Chen, L.; Honsho, Y.; Seki, S.; Jiang, D. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. J. Am. Chem. Soc. 2010, 132, 6742−6748. doi: 10.1021/ja100327h

    12. [12]

      Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. 2008, 8, 486−488.

    13. [13]

      Ren, S.; Dawson, R.; Laybourn, A.; Jiang, J.; Khimyak, Y.; Adams, D. J.; Cooper, A. I. Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine. Polym. Chem. 2012, 3, 928. doi: 10.1039/c2py00585a

    14. [14]

      Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: design, synthesis and applicatio. Chem. Soc. Rev. 2013, 42, 8012−8031. doi: 10.1039/c3cs60160a

    15. [15]

      Wang, J. L.; Yan, J.; Tang, Z. M.; Xiao, Q.; Ma, Y.; Pei, J. Gradient shape-persistent π-conjugated dendrimers for light-harvesting: Synthesis, photophysical properties, and energy funneling. J. Am. Chem. Soc. 2008, 130, 9952−9962. doi: 10.1021/ja803109r

    16. [16]

      Wang, J. Y.; Han, J. M.; Yan, J.; Ma, Y.; Pei, J. A mechanically interlocked [3]rotaxane as a light-harvesting antenna: synthesis, characterization, and intramolecular energy transfer. Chemistry 2009, 15, 3585−3594. doi: 10.1002/chem.v15:14

    17. [17]

      Wang, J. L.; Chan, Y. T.; Moorefield, C. N.; Pei, J.; Modarelli, D. A.; Romano, N. C.; Newkome, G. R. Shape-persistent, truxene-based, nano-sized bisterpyridine ruthenium(II) complexes: synthesis and photophysical properties. Macromol. Rapid Commun. 2010, 31, 850−855. doi: 10.1002/marc.v31:9/10

    18. [18]

      Jiang, Y.; Wang, J. Y.; Ma, Y.; Cui, Y. X.; Zhou, Q. F.; Pei, J. Large rigid blue-emitting π-conjugated stilbenoid-based dendrimers: synthesis and properties. Org. Lett. 2006, 8, 4287−4290. doi: 10.1021/ol0616283

    19. [19]

      Luo, J.; Zhou, Y.; Niu, Z. Q.; Zhou, Q. F.; Ma, Y. G.; Pei, J. Three-dimensional architectures for highly stable pure blue emission. J. Am. Chem. Soc. 2007, 129, 11314−11315. doi: 10.1021/ja073466r

    20. [20]

      Wang, L.; Jiang, Y.; Luo, J.; Zhou, Y.; Zhou, J.; Wang, J.; Pei, J.; Cao, Y. Highly efficient and color-stable deep-blue organic light-emitting diodes based on a solution-processible dendrimer. Adv. Mater. 2009, 21, 4854−4858. doi: 10.1002/adma.200901039

    21. [21]

      Sun, Y. M.; Xiao, K.; Liu, Y. Q.; Wang, J. L.; Pei, J.; Yu, G.; Zhu, D. B. Oligothiophene-functionalized truxene: star-shaped compounds for organic field-effect transistors. Adv. Funct. Mater. 2005, 15, 818−822. doi: 10.1002/(ISSN)1616-3028

    22. [22]

      Wang, J. L.; He, Z.; Wu, H.; Cao, Y.; Pei, J. π-Conjugated molecular heterojunctions with multi[60]fullerene: photophysical, electrochemical, and photovoltaic properties. New J. Chem. 2012, 36, 1583−1588. doi: 10.1039/c2nj40121e

    23. [23]

      Lin, S. H.; Hsu, Y. C.; Lin, J. T.; Lin, C. K.; Yang, J. S. Isotruxene-derived cone-shaped organic dyes for dye-sensitized solar cells. J. Org. Chem. 2010, 75, 7877−7886. doi: 10.1021/jo101831p

    24. [24]

      Zong, X.; Liang, M.; Fan, C.; Tang, K.; Li, G.; Sun, Z.; Xue, S. Design of truxene-based organic dyes for high-efficiency dye-sensitized solar cells employing cobalt redox shuttle. J. Phys. Chem. C 2012, 116, 11241−11250.

    25. [25]

      Zong, X.; Liang, M.; Chen, T.; Jia, J.; Wang, L.; Sun, Z.; Xue, S. Efficient iodine-free dye-sensitized solar cells employing truxene-based organic dyes. Chem. Commun. 2012, 48, 6645−6647. doi: 10.1039/c2cc32926c

    26. [26]

      Yuan, M. S.; Liu, Z. Q.; Fang, Q. Donor-and-acceptor substituted truxenes as multifunctional fluorescent probes. J. Org. Chem. 2007, 72, 7915−7922. doi: 10.1021/jo071064w

    27. [27]

      Zhou, H.; Zhao, X.; Huang, T.; Lu, R.; Zhang, H.; Qi, X.; Xue, P.; Liu, X.; Zhang, X. Synthesis of star-shaped monodisperse oligo(9,9-di-n-octylfluorene-2,7-vinylene)s functionalized truxenes with two-photon absorption properties. Org. Biomol. Chem. 2011, 9, 1600−1607. doi: 10.1039/c0ob00803f

    28. [28]

      Xie, Y.; Zhang, X.; Xiao, Y.; Zhang, Y.; Zhou, F.; Qi, J.; Qu, J. Fusing three perylenebisimide branches and a truxene core into a star-shaped chromophore with strong two-photon excited fluorescence and high photostability. Chem. Commun. 2012, 48, 4338−4340. doi: 10.1039/c2cc31261a

    29. [29]

      Du, B.; Fortin, D.; Harvey, P. D. Singlet and triplet energy transfers in tetra-(meso-truxene)zinc(II)- and tetra-(meso-tritruxene)zinc(II) porphyrin and porphyrin-free base dendrimers. Inorg. Chem. 2011, 50, 11493−11505. doi: 10.1021/ic2013667

    30. [30]

      Diring, S.; Ventura, B.; Barbieri, A.; Ziessel, R. Photoinduced energy transfer processes in hybrid organic-inorganic multichromophoric arrays arranged on a truxene-based platform. Dalton Trans. 2012, 41, 13090−13096. doi: 10.1039/c2dt30385j

    31. [31]

      Sprick, R. S.; Thomas, A.; Scherf, U. Acid catalyzed synthesis of carbonyl-functionalized microporous ladder polymers with high surface area. Polym. Chem. 2010, 1, 283−285. doi: 10.1039/b9py00375d

    32. [32]

      Singh, H.; Tomer, V. K.; Jena, N.; Bala, I.; Sharma, N.; Nepak, D.; De Sarkar, A.; Kailasam, K.; Pal, S. K. A porous, crystalline truxene-based covalent organic framework and its application in humidity sensing. J. Mater. Chem. A 2017, 5, 21820−21827. doi: 10.1039/C7TA05043G

    33. [33]

      Battula, V. R.; Singh, H.; Kumar, S.; Bala, I.; Pal, S. K.; Kailasam, K. Natural sunlight driven oxidative homocoupling of amines by a truxene-based conjugated microporous polymer. ACS Catal. 2018, 8, 6751−6759. doi: 10.1021/acscatal.8b00623

    34. [34]

      Xu, Y.; Mao, N.; Feng, S.; Zhang, C.; Wang, F.; Chen, Y.; Zeng, J.; Jiang, J. X. Perylene-containing conjugated microporous polymers for photocatalytic hydrogen evolution. Macromol. Chem. Phys. 2017, 218, 1700049. doi: 10.1002/macp.v218.14

    35. [35]

      Ren, S.; Dawson, R.; Adams, D. J.; Cooper, A. I. Low band-gap benzothiadiazole conjugated microporous polymers. Polym. Chem. 2013, 4, 5585−5590. doi: 10.1039/c3py00690e

    36. [36]

      Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl. Chem. 1985, 57, 603−619. doi: 10.1351/pac198557040603

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  567
  • HTML全文浏览量:  10
文章相关
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-05-09
  • 修回日期:  2019-06-18
  • 网络出版日期:  2019-09-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章