Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution

Jia-Xing Wang Yan-Bin Huang Wan-Tai Yang

Citation:  Jia-Xing Wang, Yan-Bin Huang, Wan-Tai Yang. Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution[J]. Chinese Journal of Polymer Science, 2020, 38(2): 137-142. doi: 10.1007/s10118-019-2308-y shu

Photo-grafting Poly(acrylic acid) onto Poly(lactic acid) Chains in Solution

English


    1. [1]

      Di Lorenzo, M. L.; Androsch R. (eds.) Synthesis, structure and properties of poly(lactic acid). Springer, Switzerland, 2018, p. 1.

    2. [2]

      Aurus, R.; Lim, L.; Selke, S. E. M.; Tsuji, H. (eds.) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Canada, 2010, p. 141.

    3. [3]

      Krishnan, S.; Pandey, P.; Mohanty, S.; Nayak, S. K. Toughening of poly(lactic acid): an overview of research progress. Polym. Plastic. Tech. Eng. 2016, 55, 1623−1652. doi: 10.1080/03602559.2015.1098698

    4. [4]

      Ramot, Y.; Haim-Zada, M.; Domb, A. J.; Nyska, A. Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliver. Rev. 2016, 107, 153−159. doi: 10.1016/j.addr.2016.03.012

    5. [5]

      Tyler, B.; Gullotti, D.; Mangraviti, A.; Utsuki, T.; Brem, H. Poly(lactic acid) (PLA) controlled delivery carriers for biomedical applications. Adv. Drug Deliver. Rev. 2016, 107, 163−168. doi: 10.1016/j.addr.2016.06.018

    6. [6]

      Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338−356. doi: 10.1016/j.progpolymsci.2009.12.003

    7. [7]

      Critechfield, F. E.; Koleske, J. V. US Patent 3, 760, 034, 1973.

    8. [8]

      Wu, C. Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid—characterization and biodegradability assessment. Macromol. Biosci. 2005, 5, 352−361. doi: 10.1002/(ISSN)1616-5195

    9. [9]

      Dorman, G.; Nakamura, H.; Pulsipher, A.; Prestwich, G. D. The life of pi star: exploring the exciting and forbidden worlds of the benzophenone photophore. Chem. Rev. 2016, 116, 15284−15398. doi: 10.1021/acs.chemrev.6b00342

    10. [10]

      Yang, W. T.; Ranby, B. Bulk surface photografting process and its applications. I. Reactions and kinetics. J. Appl. Polym. Sci. 1996, 62, 533−543. doi: 10.1002/(ISSN)1097-4628

    11. [11]

      Li, Y.; DeSimone, J. M.; Poon, C.; Samulski, E. T. Photoinduced graft polymerization of styrene onto polypropylene substrates. J. Appl. Polym. Sci. 1997, 64, 883−889. doi: 10.1002/(ISSN)1097-4628

    12. [12]

      Ranby, B.; Yang, W. T. Tretinnikov, V. Tokarev, V.; Xu, Y. H. Lamination of polymer films by bulk surface photografting process and properties. Chinese J. Polym. Sci. 2001, 19, 123−127.

    13. [13]

      Yang, W. T.; Ranby, B. Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting. J. Appl. Polym. Sci. 1996, 62, 545−555. doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Ma, H.; Davis, R. H.; Bowman, C. N. A novel sequential photoinduced living graft polymerization. Macromolecules 2000, 33, 331−335. doi: 10.1021/ma990821s

    15. [15]

      Janorkar, A. V.; Metters, A. T.; Hirt, D. E. Modification of poly(lactic acid) films: enhanced wettability from surface-confined photografting and increased degradation rate due to an artifact of the photografting process. Macromolecules 2004, 37, 9151−9159. doi: 10.1021/ma049056u

    16. [16]

      Ikada, E. Photo- and bio-degradable polyesters, photodegradation behaviours of aliphatic polyesters. J. Photopolym. Sci. Tech. 1997, 10, 265−269. doi: 10.2494/photopolymer.10.265

    17. [17]

      Tsuji, H.; Echizen, Y.; Nishimura, Y. Photodegradation of biodegradable polyesters: a comprehensive study on poly(L-lactide) and poly(ε-caprolactone). Polym. Degrad. Stab. 2006, 91, 1128−1137. doi: 10.1016/j.polymdegradstab.2005.07.007

    18. [18]

      Li, L.; Raghupathi, K.; Song, C.; Prasad, P.; Thayumanavan, S. Self-assembly of random copolymers. Chem. Commun. 2014, 50, 13417−13432. doi: 10.1039/C4CC03688C

    19. [19]

      Zhou, Y.; Liu, B.; Wang, X. Self-assembly of homopolymers through strong dipole-dipole interaction in their aqueous solutions. Polymer 2016, 97, 1−10. doi: 10.1016/j.polymer.2016.05.011

    20. [20]

      Choucair, A.; Lavigueur, C.; Eisenberg, A. Polystyrene-b-poly(acrylic acid) vesicle size control using solution properties and hydrophilic block length. Langmuir 2004, 20, 3894−3900. doi: 10.1021/la035924p

    21. [21]

      McNeill, I. C.; Sadeghi, S. M. T. Thermal-stability and degradation mechanisms of poly(acrylic acid) and its salts. I. Poly(acrylic acid). Polym. Degrad. Stab. 1990, 29, 233. doi: 10.1016/0141-3910(90)90034-5

    22. [22]

      Chen, L.; Hu, K.; Sun, S.; Jiang, H.; Huang, D.; Zhang, K.; Pan, L.; Li, Y. Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J. Polym. Sci. 2018, 36, 1342−1352. doi: 10.1007/s10118-018-2143-6

    23. [23]

      Zhang, J.; Jia, J.; Kim, J. P.; Shen, H.; Yang, F.; Zhang, Q.; Xu, M.; Bi, W.; Wang, X.; Yang, J.; Wu, D. Ionic colloidal molding as a biomimetic scaffolding strategy for uniform bone tissue regeneration. Adv. Mater. 2017, 29, 1605546−1605554. doi: 10.1002/adma.v29.17

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  2381
  • HTML全文浏览量:  113
文章相关
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-05-12
  • 修回日期:  2019-05-23
  • 网络出版日期:  2019-09-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章