Dendronized Polymers with High FTC-chromophore Loading Density: Large Second-order Nonlinear Optical Effects, Good Temporal and Thermal Stability

Meng Jin Zhao-Chen Zhu Qiu-Yan Liao Qian-Qian Li Zhen Li

Citation:  Meng Jin, Zhao-Chen Zhu, Qiu-Yan Liao, Qian-Qian Li, Zhen Li. Dendronized Polymers with High FTC-chromophore Loading Density: Large Second-order Nonlinear Optical Effects, Good Temporal and Thermal Stability[J]. Chinese Journal of Polymer Science, 2020, 38(2): 118-125. doi: 10.1007/s10118-019-2307-z shu

Dendronized Polymers with High FTC-chromophore Loading Density: Large Second-order Nonlinear Optical Effects, Good Temporal and Thermal Stability

English


    1. [1]

      Dalton, L. R.; Sullivan, P. A.; Bale, D. H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 2010, 110, 25−55. doi: 10.1021/cr9000429

    2. [2]

      Bai, Y.; Song, N. H.; Gao, J. P.; Sun, X.; Wang, X. M.; Yu, G. M.; Wang, Z. Y. A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant. J. Am. Chem. Soc. 2005, 127, 2060−2061. doi: 10.1021/ja042854f

    3. [3]

      Luo, J. D.; Huang, S.; Shi, Z. W.; Polishak, B. M.; Zhou, X. H.; Jen, A. K. Y. Tailored organic electro-optic materials and their hybrid systems for device applications. Chem. Mater. 2011, 23, 544−553. doi: 10.1021/cm1022344

    4. [4]

      Yu, D.; Gharavi, A.; Yu, L. P. Novel aromatic polyimides for nonlinear optics. J. Am. Chem. Soc. 1995, 117, 11680−11686. doi: 10.1021/ja00152a008

    5. [5]

      Wu, W. B.; Tang, R.; Li, Q. Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997−4022. doi: 10.1039/C4CS00224E

    6. [6]

      Bhattacharjee, Y. L, S.; Dalton, L. R. Antiparallel-aligned neutral ground state and zwitterionic chromophores as a nonlinear optical material. J. Am. Chem. Soc. 2006, 128, 6847−6853. doi: 10.1021/ja057903i

    7. [7]

      Huang, W.; Jin, Z. A.; Shi, Z. W.; Intemann, J. J.; Li, M.; Luo, J. D.; Jen, A. K. Y. Spontaneous thermal crosslinking of a sydnone containing side-chain polymer with maleimides through a convergent [3 + 2] dual cycloaddition cycloreversion process for electro-optics. Polym. Chem. 2013, 4, 5760−5767. doi: 10.1039/c3py00694h

    8. [8]

      Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 2103−2140. doi: 10.1021/acs.chemrev.5b00515

    9. [9]

      Benabid, F.; Knight, J. C.; Antonopoulos, G.; Russell, P. S. J. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399−402. doi: 10.1126/science.1076408

    10. [10]

      Marks, T. J.; Ratner, M. A. Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angew. Chem. Int. Ed. 1995, 34, 155−173. doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Luo, J. D.; Zhou, X. H.; Jen, A. K. Y. Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. J. Mater. Chem. 2009, 19, 7410−7424. doi: 10.1039/b907173c

    12. [12]

      Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G.; Li, Z. New main-chain hyperbranched polymers: facile synthesis, structural control, and second-order nonlinear optical properties. Polymer 2012, 53, 153−160. doi: 10.1016/j.polymer.2011.11.015

    13. [13]

      Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G.; Li, Z. New second-order nonlinear optical polymers derived from AB2 and AB monomers via Sonogashira coupling reaction. Macromol. Chem. Phys. 2010, 211, 916−923. doi: 10.1002/macp.200900605

    14. [14]

      Wu, W. B.; Fu, Y. J.; Wang, C.; Ye, C.; Qin, J. G.; Li, Z. A series of hyperbranched polytriazoles containing perfluoroaromatic rings from AB2-type monomers: Convenient syntheses by click chemistry under copper(I) catalysis and enhanced optical nonlinearity. Chem. Asian J. 2011, 6, 2787−2795. doi: 10.1002/asia.v6.10

    15. [15]

      Wu, W. B.; Ye, C.; Yu, G.; Liu, Y. Q.; Qin, J. G.; Li, Z. New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper(I) catalysis: Improved optical transparency and enhanced NLO effects. Chem. Eur. J. 2012, 18, 4426−4434. doi: 10.1002/chem.v18.14

    16. [16]

      Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G; Li, Z. New hyperbranched polyaryleneethynylene containing azobenzene chromophore moieties in the main chain: facile synthesis, large optical nonlinearity and high thermal stability. Polym. Chem. 2010, 1, 78−81.

    17. [17]

      Li, Z. A; Yu, G.; Liu, Y. Q.; Ye, C.; Qin, J. G.; Li, Z. Dendronized polyfluorenes with high azo-chromophore loading density: convenient synthesis and enhanced second-order nonlinear optical effects. Macromolecules 2009, 42, 6463−6472. doi: 10.1021/ma901108r

    18. [18]

      Chen, P. Y.; Yin, X. Y.; Xie, Y. J.; Li, S. F.; Luo, S. Y.; Zeng, H. Y.; Guo, G. C.; Li, Q. Q.; Li, Z. FTC-containing molecules: large second-order nonlinear optical performance and excellent thermal stability, and the key development of the ‘‘Isolation Chromophore’’ concept. J. Mater. Chem. C 2016, 4, 11474−11481. doi: 10.1039/C6TC04282A

    19. [19]

      Holman, J.; Ye, S.; Neivandt, D. J.; Davies, P. B. Studying nanoparticle-induced structural changes within fatty acid multilayer films using sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 2004, 126, 14322−14323. doi: 10.1021/ja046954x

    20. [20]

      Shi, Z. W.; Luo, J. D.; Jen, A. K. Y. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. J. Mater. Chem. 2012, 22, 951−959. doi: 10.1039/C1JM14254B

    21. [21]

      Tang, R. L.; Chen, H.; Zhou, S. M.; Xiang, W.; Tang, X.; Liu, B.; Dong, Y.; Zeng, H.; Li, Z. New ‘‘X-type’’ second-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high NLO effects. Polym. Chem. 2015, 6, 5580−5589. doi: 10.1039/C5PY00155B

    22. [22]

      Kolli, B.; Pandey, S.; Mishra, S. P.; Kanai, T.; Joshi, M. P.; Mohan, R. S.; Samu, A. B. Synthesis and characterization of azo-bisbenzylidene-based polymers for second order nonlinear optics. Polym. Chem. 2013, 51, 4317−4324. doi: 10.1002/pola.26842

    23. [23]

      Wu, W. B.; Fu, Y. J.; Wang, C.; Xu, Z.; Ye, C.; Qin, J. G.; Li, Z. Second-order nonlinear optical hyperbranched polymer containing isolation chromophore moieties derived from both “H”-type and star-type chromophores. Chinese J. Polym. Sci. 2013, 31, 1415−1423. doi: 10.1007/s10118-013-1343-3

    24. [24]

      Li, Z. A.; Li, Z.; Di, C. A.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Zhang, K.; Liu, Y. Q.; Ye, C.; Qin, J. G. Structural control of the side-chain chromophores to achieve highly efficient nonlinear optical polyurethanes. Macromolecules 2006, 39, 6951−6961. doi: 10.1021/ma0608875

    25. [25]

      Li, Z. A.; Li, P. C.; Dong, S. C.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Li, Z.; Ye, C.; Qin, J. G. Controlling nonlinear optical effects of polyurethanes by adjusting isolation spacers through facile postfunctional polymer reactions. Polymer 2007, 48, 3650−3657. doi: 10.1016/j.polymer.2007.04.062

    26. [26]

      Zeng, Q.; Li, Z. A.; Li, Z.; Ye, C.; Qin, J. G.; Tang, B. Z. Convenient attachment of highly polar azo chromophore moieties to disubstituted polyacetylene through polymer reactions by using “click” chemistry. Macromolecules 2007, 40, 5634−5637. doi: 10.1021/ma070846o

    27. [27]

      Chen, P. Y.; Liu, G. C.; Zhang, H. Y.; Jin, M.; Han, M. M.; Cheng, Z. Y.; Peng, Q.; Li, Q. Q.; Li, Z. A rigid ringlike molecule: large second-order nonlinear optical performance, good temporal and thermal stability, and ideal spherical structure conforming to the ‘‘site isolation’’ principle. J. Mater. Chem. C 2018, 6, 6784−6791. doi: 10.1039/C8TC01598H

    28. [28]

      Chen, P. Y.; Li, Z. The design of second-order nonlinear optical dendrimers: from “branch only” to “root containing”. Chinese J. Polym. Sci. 2017, 7, 793−798.

    29. [29]

      Chen, P. Y.; Zhang, H. Y.; Han, M. M.; Cheng, Z. Y.; Peng, Q.; Li, Q. Q.; Li, Z. Janus molecules: large second-order nonlinear optical performance, good temporal stability, excellent thermal stability and spherical structure with optimized dendrimer structure. Mater. Chem. Front. 2018, 2, 1374−1382. doi: 10.1039/C8QM00128F

    30. [30]

      Wu, W. B.; Huang, Q.; Qiu, G. F.; Ye, C.; Qin, J. G.; Li, Z. Aromatic/perfluoroaromatic self-assembly effect: an effective strategy to improve the NLO effect. J. Mater. Chem. 2012, 22, 18486−18495. doi: 10.1039/c2jm33129b

    31. [31]

      Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Highly efficient and thermally stable electro-optical dendrimers for photonics. Adv. Funct. Mater. 2002, 12, 565−574. doi: 10.1002/1616-3028(20020916)12:9<565::AID-ADFM565>3.0.CO;2-8

    32. [32]

      Wu, W. B.; Huang, L. J.; Song, C. F.; Yu, G.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Q. Q.; Li, Z. Novel global-like second-order nonlinear optical dendrimers: convenient synthesis through powerful click chemistry and large NLO effects achieved by using simple azo chromophore. Chem. Sci. 2012, 3, 1256−1261. doi: 10.1039/c2sc00834c

    33. [33]

      Zhu, Z. C.; Li, Z. A.; Tan, Y.; Li, Z.; Li, Q. Q.; Zeng, Q.; Ye, C.; Qin, J. G. New hyperbranched polymers containing second-order nonlinear optical chromophores: synthesis and nonlinear optical characterization. Polymer 2006, 47, 7881−7888. doi: 10.1016/j.polymer.2006.09.047

    34. [34]

      Li, Z. A.; Yu, G.; Hu, P.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Z. New azo chromophore containing hyperbranched polytriazoles derived from AB2 monomers via click chemistry under copper(I) catalysis. Macromolecules 2009, 42, 1589−1596. doi: 10.1021/ma8025223

    35. [35]

      Ronchi, M.; Pizzotti, M.; Biroli, A. O.; Righetto, S.; Ugo, R. Second-order nonlinear optical (NLO) properties of a multichromophoric system based on an ensemble of four organic NLO chromophores nanoorganized on a cyclotetrasiloxane architecture. J. Phys. Chem. C 2009, 113, 2745−2760.

    36. [36]

      Yang, H. T.; Tang, R. L.; Wu, W. B.; Liu, W.; Guo, Q.; Liu, Y. L.; Xu, S. G.; Cao, S. K.; Li, Z. A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: convenient synthesis and large nonlinear optical effects. Polym. Chem. 2016, 7, 4016−4024. doi: 10.1039/C6PY00546B

    37. [37]

      Li, Z. A.; Wu, W. B.; Li, Q. Q.; Yu, G.; Xiao, L.; Liu, Y. Q.; Ye, C.; Qin, J. G.; Li, Z. High-generation second-order nonlinear optical (NLO) dendrimers: convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew. Chem. Int. Ed. 2010, 49, 2763−2767. doi: 10.1002/anie.200906946

    38. [38]

      Liu, J. L.; Wang, L.; Zhen, Z.; Liu, X. H. Synthesis of novel polyarylate with elecrooptical chromophores as side chain as electro-optic host polymer. Colloid Polym. Sci. 2012, 290, 1215−1220. doi: 10.1007/s00396-012-2695-x

    39. [39]

      Liu, W.; Yang, H. T.; Wu, W. B.; Gao, H. Y.; Xu. S. D.; Guo, Q.; Liu, Y. L.; Xu, S. G. Calix [4] resorcinarene-based branched macromolecules for all-optical photorefractive applications. J. Mater. Chem. C 2016, 4, 10684−10690. doi: 10.1039/C6TC04062D

    40. [40]

      Hu, C. L.; Chen, Z.; Xiao, H. Y.; Zhen, Z.; Liu, X. H.; Bo, S. H. Synthesis and characterization of a novel indoline based nonlinear optical chromophore with excellent electro-optic activity and high thermal stability by modifying the π-conjugated bridges. J. Mater. Chem. C 2017, 5, 5111−5118. doi: 10.1039/C7TC00735C

    41. [41]

      Li, Z.; Qin, J. G.; Li, S. J.; Ye, C.; Luo, J.; Cao, Y. Polyphophazene containing indole-based dual chromophores: synthesis and nonlinear optical characterization. Macromolecules 2002, 35, 9232−9235. doi: 10.1021/ma020769r

    42. [42]

      Li, Z.; Huang, C.; Hua, J. L.; Qin, J. G.; Yang, Z.; Ye, C. A new post-functional approach to prepare second-order nonlinear optical polyphophazenes containing sulfonyl-based chromophore. Macromolecules 2004, 37, 371−376. doi: 10.1021/ma035044h

    43. [43]

      Wu, W. B.; Li, Z. Further improvement of the macroscopic NLO coefficient and optical transparency of hyperbranched polymers by enhancing the degree of branching. Polym. Chem. 2014, 5, 5100−5108. doi: 10.1039/C4PY00419A

    44. [44]

      Wu, W. B.; Ye, S. H.; Huang, L. J.; Yu, G.; Liu, Y. Q.; Qin, J. G.; Li, Z. A functional conjugated hyperbranched polymer derived from tetraphenylethene and oxadiazole moieties: synthesis by one-pot “a4 + b2 + c2” polymerization and applicaion as explosive chemosensor and PLED. Chinese J. Polym. Sci. 2013, 31, 1432−1442. doi: 10.1007/s10118-013-1328-2

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  2255
  • HTML全文浏览量:  89
文章相关
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-05-04
  • 修回日期:  2019-05-23
  • 网络出版日期:  2019-09-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章