Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications

Serife O. Hacioglu

Citation:  Serife O. Hacioglu. Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications[J]. Chinese Journal of Polymer Science, 2020, 38(2): 109-117. doi: 10.1007/s10118-019-2306-0 shu

Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications


    1. [1]

      Cheng, X.; Fu, Y.; Zhao, J.; Zhang, Y. Polyaniline with high crystallinity degree: synthesis, structure, and electrochemical properties. J. Appl. Polym. Sci. 2014, 131, 39770−39777.

    2. [2]

      Cansu-Ergun, E. G. Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers. Chinese J. Polym. Sci. 2019, 37, 28−35. doi: 10.1007/s10118-019-2181-8

    3. [3]

      Guo, B.; Li, W.; Guo, X.; Meng, X.; Ma, W.; Zhang, M.; Li, Y. High efficiency nonfullerene polymer solar cells with thick active layer and large area. Adv. Mater. 2017, 29, 1702291−1702297. doi: 10.1002/adma.201702291

    4. [4]

      Azeri, O.; Aktas, E.; Istanbulluoglu, C.; Hacioglu, S. O.; Cevher, S. C.; Toppare, L.; Cirpan, A. Efficient benzodithiophene and thienopyrroledione containing random polymers as components for organic solar cells. Polymer 2017, 133, 60−67. doi: 10.1016/j.polymer.2017.11.024

    5. [5]

      Kamtekar, K. J.; Vaughan, H. L.; Lyons, B. P.; Monkman, A. P.; Pandya, S. U.; Bryce, M. R. Synthesis and spectroscopy of poly(9,9-dioctylfluorene-2,7-diyl-co-2,8-dihexyldibenzothiophene-S,S-dioxide-3,7-diyl)s: solution-processable, deep-blue emitters with a high triplet energy. Macromolecules, 2010, 43, 4481−4488. doi: 10.1021/ma100566p

    6. [6]

      Lee, K.; Povlich, L. K.; Kim, J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 2010, 135, 2179−2189. doi: 10.1039/c0an00239a

    7. [7]

      Soylemez, S.; Hacioglu, S. O.; Kesik, M.; Unay, H.; Cirpan, A.; Toppare, L. A novel and effective surface design: conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. ACS Appl. Mater. Interfaces 2014, 6, 18290−18300. doi: 10.1021/am5054493

    8. [8]

      Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R. In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater. 2000, 12, 1563−1571. doi: 10.1021/cm000097o

    9. [9]

      Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater. 1998, 10, 2101−2108. doi: 10.1021/cm9801237

    10. [10]

      Yoo, S. J.; Cho, J. H.; Lim, J. W.; Park, S. H.; Jang, J.; Sung, Y. E. High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochem. Commun. 2010, 12, 164−167. doi: 10.1016/j.elecom.2009.11.014

    11. [11]

      Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. A processable green polymeric electrochromic. Macromolecules 2005, 38, 669−675. doi: 10.1021/ma0484173

    12. [12]

      Roncali, J. Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 2007, 28, 1761−1775. doi: 10.1002/(ISSN)1521-3927

    13. [13]

      Gunbas, G.; Toppare, L. Green as it gets; donor-acceptor type polymers as the key to realization of RGB based polymer display devices. Macromol. Symp. 2010, 297, 79−86. doi: 10.1002/masy.v297.1

    14. [14]

      Nie, G.; Qu, L.; Xu, J. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim. Acta 2008, 53, 8351−8358. doi: 10.1016/j.electacta.2008.06.058

    15. [15]

      Han, R.; Lu, S.; Wang, Y.; Zhang, X.; Wu, Q.; He, T. Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells. Electrochim. Acta 2015, 173, 796−803.

    16. [16]

      Wang, Z.; Xu, J.; Lu, B.; Zhang, S.; Qin, L.; Mo, D.; Zhen, S. Poly(thieno[3,4-b]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance. Langmuir 2014, 30, 15581−15589. doi: 10.1021/la503948f

    17. [17]

      Liu, X.; Hu, Y.; Shen, L.; Zhang, G.; Cao, T.; Xu, J.; Zhao, F.; Hou, J.; Liu, H.; Jiang, F. Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: electrochemical, optical, and electrochromic properties. Electrochim. Acta 2018, 288, 52−60. doi: 10.1016/j.electacta.2018.08.072

    18. [18]

      Hu, Y.; Jiang, F.; Lu, B.; Liu, C.; Hou, J.; Xu, J. Free-standing oligo(oxyethylene)-functionalized polythiophene withthe 3,4-ethylenedioxythiophene building block: electrosynthesis, electrochromic and thermoelectric properties. Electrochim. Acta 2017, 228, 361−370. doi: 10.1016/j.electacta.2017.01.019

    19. [19]

      Hu, Y.; Wang, Z.; Lin, K.; Xu, J.; Duan, X.; Zhao, F.; Hou, J.; Jiang, F. Electrosynthesis and electrochromic properties of free-standing copolymer based on oligo(oxyethylene) cross-linked 2,2′-bithiophene and 3,4-ethylenedioxythiophene. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1583−1592. doi: 10.1002/pola.v54.11

    20. [20]

      He, L.; Freeman, H. S.; Nakpathom, M.; Boyle, P. D. Synthesis and X-ray analysis of a perfluoroalkyl-substituted azobenzene dye. Dyes Pigments 2015, 120, 245−250. doi: 10.1016/j.dyepig.2015.04.014

    21. [21]

      Gong, C. B.; He, L. H.; Long, J. F.; Liu, L. T.; Liu, S.; Tang, Q.; Fu, X. K. Synthesis and characterisation of azobenzene-bridged cationic-cationic and neutral-cationic electrochromic materials. Synthetic Met. 2016, 220, 147−154. doi: 10.1016/j.synthmet.2016.06.011

    22. [22]

      Ferreira, J.; Santos, M. J. L.; Matos, R.; Ferreira, O. P.; Rubira, A. F.; Girotto, E. M. Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes. J. Electroanal. Chem. 2006, 591, 27−32. doi: 10.1016/j.jelechem.2006.03.016

    23. [23]

      Pei, X.; Fernandes, A.; Mathy, B.; Laloyaux, X.; Nysten, B.; Riant, O.; Jonas, A. M. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir 2011, 27, 9403−9412. doi: 10.1021/la201526u

    24. [24]

      Apaydin, D. H.; Akpinar, H.; Sendur, M.; Toppare, L. Electrochromism in multichromic conjugated polymers: thiophene and azobenzene derivatives on the main chain. J. Electroanal. Chem. 2012, 665, 52−57. doi: 10.1016/j.jelechem.2011.11.016

    25. [25]

      Yigit, D.; Udum, Y. A.; Güllü, M.; Toppare, L. Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: multicolored electrochromic polymers. J. Electroanal. Chem. 2014, 712, 215−222. doi: 10.1016/j.jelechem.2013.11.028

    26. [26]

      Yagmur, I.; Ak, M.; Bayrakceken, A. Fabricating multicolored electrochromic devices using conducting copolymers. Smart Mater. Struct. 2013, 22, 115022−115030. doi: 10.1088/0964-1726/22/11/115022

    27. [27]

      Soganci, T.; Kurtay, G.; Ak, M.; Güllü, M. Preparation of an EDOT-based polymer: optoelectronic properties and electrochromic device application. RSC Adv. 2014, 5, 2630−2639.

    28. [28]

      De Paoli, M. A.; Gazotti, W. A. Electrochemistry, polymers and opto-electronic devices: a combination with a future. J. Braz. Chem. Soc. 2002, 13, 410−424.

    29. [29]

      Camurlu P.; Gultekin, C. A comprehensive study on utilization of N-substituted poly(2,5-dithienylpyrrole) derivatives in electrochromic devices. Sol. Energy Mater. Sol. Cells 2012, 107, 142−147. doi: 10.1016/j.solmat.2012.07.031

  • 加载中
  • PDF下载量:  0
  • 文章访问数:  613
  • HTML全文浏览量:  31
  • 发布日期:  2020-02-01
  • 收稿日期:  2019-04-30
  • 修回日期:  2019-05-20
  • 网络出版日期:  2019-09-04
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索