Phase Behaviors of Soft-core Particle Systems

Ning Xu

Citation:  Ning Xu. Phase Behaviors of Soft-core Particle Systems[J]. Chinese Journal of Polymer Science, 2019, 37(11): 1065-1082. doi: 10.1007/s10118-019-2304-2 shu

Phase Behaviors of Soft-core Particle Systems

English


    1. [1]

      Debenedetti, P. G.; Stillinger, F. H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267. doi: 10.1038/35065704

    2. [2]

      Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. of Mod. Phys. 2011, 83, 587–645. doi: 10.1103/RevModPhys.83.587

    3. [3]

      Ediger, M. D.; Harrowell, P. Perspective: Supercooled liquids and glasses. J. Chem. Phys. 2012, 137, 080901. doi: 10.1063/1.4747326

    4. [4]

      Strandburg, K. J. Two-dimensional melting. Rev. Mod. Phys. 1988, 60, 161–207. doi: 10.1103/RevModPhys.60.161

    5. [5]

      Dash, J. G. History of the search for continuous melting. Rev. Mod. Phys. 1999, 71, 1737–1743. doi: 10.1103/RevModPhys.71.1737

    6. [6]

      Gasser, U. Crystallization in three- and two-dimensional colloidal suspensions. J. Phys.-Condens. Matter 2009, 21, 203101. doi: 10.1088/0953-8984/21/20/203101

    7. [7]

      Kosterlitz, J. M.; Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C-Solid State Phys. 1973, 6, 1181–1203. doi: 10.1088/0022-3719/6/7/010

    8. [8]

      Halperin, B. I.; Nelson, D. R. Theory of 2-dimensional melting. Phys. Rev. Lett. 1978, 41, 121–124. doi: 10.1103/PhysRevLett.41.121

    9. [9]

      Nelson, D. R.; Halperin, B. I. Dislocation-mediated melting in 2 dimensions. Phys. Rev. B 1979, 19, 2457–2484. doi: 10.1103/PhysRevB.19.2457

    10. [10]

      Young, A. P. Melting and the vector coulomb gas in 2 dimensions. Phys. Rev. B 1979, 19, 1855–1866. doi: 10.1103/PhysRevB.19.1855

    11. [11]

      Bladon, P.; Frenkel, D. Dislocation unbinding in dense 2-dimensional crystals. Phys. Rev. Lett. 1995, 74, 2519–2522. doi: 10.1103/PhysRevLett.74.2519

    12. [12]

      Marcus, A. H.; Rice, S. A. Observations of first-order liquid-to-hexatic and hexaticto-solid phase transitions in a confined colloid suspension. Phys. Rev. Lett. 1996, 77, 2577–2580. doi: 10.1103/PhysRevLett.77.2577

    13. [13]

      Murray, C. A.; Vanwinkle, D. H. Experimental-observation of 2-stage melting in a classical two-dimensional screened coulomb system. Phys. Rev. Lett. 1987, 58, 1200–1203. doi: 10.1103/PhysRevLett.58.1200

    14. [14]

      Zahn, K.; Lenke, R.; Maret, G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 1999, 82, 2721–2724. doi: 10.1103/PhysRevLett.82.2721

    15. [15]

      von Grunberg, H. H.; Keim, P.; Zahn, K.; Maret, G. Elastic behavior of a twodimensional crystal near melting. Phys. Rev. Lett. 2004, 93, 255703. doi: 10.1103/PhysRevLett.93.255703

    16. [16]

      Lin, B.-J.; Chen, L.-J. Phase transitions in two-dimensional colloidal particles at oil/water interfaces. J. Chem. Phys. 2007, 126, 034706. doi: 10.1063/1.2409677

    17. [17]

      Qi, W.-K.; Wang, Z.; Han, Y.; Chen, Y. Melting in two-dimensional Yukawa systems: A Brownian dynamics simulation. J. Chem. Phys. 2010, 133, 234508. doi: 10.1063/1.3506875

    18. [18]

      Shiba, H.; Onuki, A.; Araki, T. Structural and dynamical heterogeneities in twodimensional melting. Europhys. Lett. 2009, 86, 66004. doi: 10.1209/0295-5075/86/66004

    19. [19]

      Prestipino, S.; Saija, F.; Giaquinta, P. V. Hexatic phase and water-like anomalies in a two-dimensional fluid of particles with a weakly softened core. J. Chem. Phys. 2012, 137, 104503. doi: 10.1063/1.4749260

    20. [20]

      Alba-Simionesco, C.; Coasne, B.; Dosseh, G.; Dudziak, G.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M. Effects of confinement on freezing and melting. J. Phys.-Condens. Matter 2006, 18, R15–R68. doi: 10.1088/0953-8984/18/6/R01

    21. [21]

      Chui, S. T. Grain-boundary theory of melting in 2 dimensions. Phys. Rev. Lett. 1982, 48, 933–935. doi: 10.1103/PhysRevLett.48.933

    22. [22]

      Lansac, Y.; Glaser, M. A.; Clark, N. A. Discrete elastic model for two-dimensional melting. Phys. Rev. E 2006, 73, 041501. doi: 10.1103/PhysRevE.73.041501

    23. [23]

      Almudallal, A. M.; Buldyrev, S. V.; Saika-Voivod, I. Inverse melting in a twodimensional off-lattice model. J. Chem. Phys. 2014, 140, 144505. doi: 10.1063/1.4870086

    24. [24]

      Bernard, E. P.; Krauth, W. Two-step melting in two dimensions: First-order liquidhexatic transition. Phys. Rev. Lett. 2011, 107, 155704. doi: 10.1103/PhysRevLett.107.155704

    25. [25]

      Engel, M.; Anderson, J. A.; Glotzer, S. C.; Isobe, M.; Bernard, E. P.; Krauth, W. Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E 2013, 87, 042134. doi: 10.1103/PhysRevE.87.042134

    26. [26]

      Kapfer, S. C.; Krauth, W. Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions. Phys. Rev. Lett. 2015, 114, 035702. doi: 10.1103/PhysRevLett.114.035702

    27. [27]

      Terao, T. Tetratic phase of Hertzian spheres: Monte Carlo simulation. J. Chem. Phys. 2013, 139, 134501. doi: 10.1063/1.4822101

    28. [28]

      Zu, M. J.; Liu, J.; Tong, H.; Xu, N. Density affects the nature of the hexatic-liquid transition in two-dimensional melting of soft-core systems. Phys. Rev. Lett. 2016, 117, 085702. doi: 10.1103/PhysRevLett.117.085702

    29. [29]

      Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953. doi: 10.1103/PhysRevLett.53.1951

    30. [30]

      Levine, D.; Steinhardt, P. J. Quasicrystals - A new class of ordered structures. Phys. Rev. Lett. 1984, 53, 2477–2480. doi: 10.1103/PhysRevLett.53.2477

    31. [31]

      Steurer, W. Twenty years of structure research on quasicrystals. Part 1. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. F. Kristallographie 2004, 219, 391–446.

    32. [32]

      Dzugutov, M. Formation of a dodecagonal quasi-crystalline phase in a simple monatomic liquid. Phys. Rev. Lett. 1993, 70, 2924–2927. doi: 10.1103/PhysRevLett.70.2924

    33. [33]

      Engel, M.; Trebin, H.-R. Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 2007, 98, 225505. doi: 10.1103/PhysRevLett.98.225505

    34. [34]

      Iacovella, C. R.; Keys, A. S.; Glotzer, S. C. Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl. Acad. Sci. USA 2011, 108, 20935–20940. doi: 10.1073/pnas.1019763108

    35. [35]

      Archer, A. J.; Rucklidge, A. M.; Knobloch, E. Quasicrystalline order and a crystalliquid state in a soft-core fluid. Phys. Rev. Lett. 2013, 111, 165501. doi: 10.1103/PhysRevLett.111.165501

    36. [36]

      Dotera, T.; Oshiro, T.; Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 2014, 506, 208–211. doi: 10.1038/nature12938

    37. [37]

      Haji-Akbari, A.; Engel, M.; Keys, A. S.; Zheng, X.; Petschek, R. G.; PalffyMuhoray, P.; Glotzer, S. C. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 2009, 462, 773–U91.

    38. [38]

      Reinhardt, A.; Romano, F.; Doye, J. P. K. Computing phase diagrams for a quasicrystal-forming patchy-particle system. Phys. Rev. Lett. 2013, 110, 255503. doi: 10.1103/PhysRevLett.110.255503

    39. [39]

      Engel, M.; Damasceno, P. F.; Phillips, C. L.; Glotzer, S. C. Computational selfassembly of a one-component icosahedral quasicrystal. Nat. Mater. 2015, 14, 109–116. doi: 10.1038/nmat4152

    40. [40]

      Liu, A. J.; Nagel, S. R. Nonlinear dynamics - Jamming is not just cool any more. Nature 1998, 396, 21–22. doi: 10.1038/23819

    41. [41]

      Liu, A. J.; Nagel, S. R. The jamming transition and the marginally jammed solid. Ann. Rev. of Condens. Matter Phys. 2010, 1, 347–369. doi: 10.1146/annurev-conmatphys-070909-104045

    42. [42]

      van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.-Condens. Matter 2010, 22.

    43. [43]

      Torquato, S.; Truskett, T. M.; Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 2000, 84, 2064–2067. doi: 10.1103/PhysRevLett.84.2064

    44. [44]

      Torquato, S.; Stillinger, F. H. Jammed hard-particle packings: From Kepler to Bernal and beyond. Rev. Mod. Phys. 2010, 82, 2633–2672. doi: 10.1103/RevModPhys.82.2633

    45. [45]

      O'Hern, C. S.; Silbert, L. E.; Liu, A. J.; Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 2003, 68, 011306. doi: 10.1103/PhysRevE.68.011306

    46. [46]

      Parisi, G.; Zamponi, F. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 2010, 82, 789–845. doi: 10.1103/RevModPhys.82.789

    47. [47]

      Xu, N. Mechanical, vibrational, and dynamical properties of amorphous systems near jamming. Front. Phys. 2011, 6, 109–123. doi: 10.1007/s11467-010-0102-y

    48. [48]

      Ikeda, A.; Berthier, L.; Sollich, P. Unified study of glass and jamming rheology in soft particle systems. Phys. Rev. Lett. 2012, 109, 018301. doi: 10.1103/PhysRevLett.109.018301

    49. [49]

      Urbani, P.; Zamponi, F. Shear yielding and shear jamming of dense hard sphere glasses. Phys. Rev. Lett. 2017, 118, 038001. doi: 10.1103/PhysRevLett.118.038001

    50. [50]

      Xu, N.; Blawzdziewicz, J.; O'Hern, C. S. Random close packing revisited: Ways to pack frictionless disks. Phys. Rev. E 2005, 71, 061306. doi: 10.1103/PhysRevE.71.061306

    51. [51]

      Chaudhuri, P.; Berthier, L.; Sastry, S. Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions. Phys. Rev. Lett. 2010, 104, 165701. doi: 10.1103/PhysRevLett.104.165701

    52. [52]

      Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and jamming transitions: From exact results to finite-dimensional descriptions. Ann. Rev. Condens. Matter Phys. 2017, 8, 265–288. doi: 10.1146/annurev-conmatphys-031016-025334

    53. [53]

      Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Fractal free energy landscapes in structural glasses. Nat. Commun. 2014, 5, 3725. doi: 10.1038/ncomms4725

    54. [54]

      Berthier, L.; Coslovich, D.; Ninarello, A.; Ozawa, M. Equilibrium sampling of hard spheres up to the jamming density and beyond. Phys. Rev. Lett. 2016, 116, 238002. doi: 10.1103/PhysRevLett.116.238002

    55. [55]

      Zhang, Z.; Xu, N.; Chen, D. T. N.; Yunker, P.; Alsayed, A. M.; Aptowicz, K. B.; Habdas, P.; Liu, A. J.; Nagel, S. R.; Yodh, A. G. Thermal vestige of the zero-temperature jamming transition. Nature 2009, 459, 230–233. doi: 10.1038/nature07998

    56. [56]

      Urich, M.; Denton, A. R. Swelling, structure, and phase stability of compressible microgels. Soft Matter 2016, 12, 9086–9094. doi: 10.1039/C6SM02056A

    57. [57]

      Miyazaki, R.; Kawasaki, T.; Miyazaki, K. Cluster glass transition of ultrasoft-potential fluids at high density. Phys. Rev. Lett. 2016, 117, 165701. doi: 10.1103/PhysRevLett.117.165701

    58. [58]

      Xu, N.; Haxton, T. K.; Liu, A. J.; Nagel, S. R. Equivalence of glass transition and colloidal glass transition in the hard-sphere limit. Phys. Rev. Lett. 2009, 103, 245701. doi: 10.1103/PhysRevLett.103.245701

    59. [59]

      Khrapak, S. A.; Morfill, G. E. Accurate freezing and melting equations for the LennardJones system. J. Chem. Phys. 2011, 134, 094108. doi: 10.1063/1.3561698

    60. [60]

      Likos, C. N.; Lang, A.; Watzlawek, M.; Lowen, H. Criterion for determining clustering versus reentrant melting behavior for bounded interaction potentials. Phys. Rev. E 2001, 63, 031206. doi: 10.1103/PhysRevE.63.031206

    61. [61]

      Pamies, J. C.; Cacciuto, A.; Frenkel, D. Phase diagram of Hertzian spheres. J. Chem. Phys. 2009, 131, 044514. doi: 10.1063/1.3186742

    62. [62]

      Athanasopoulou, L.; Ziherl, P. Phase diagram of elastic spheres. Soft Matter 2017, 13, 1463–1471. doi: 10.1039/C6SM02474B

    63. [63]

      Allen, M. P.; Tildesley, D. J. Computer simulation of liquids. Oxford Science Publications, New York, 1987.

    64. [64]

      Bitzek, E.; Koskinen, P.; Gahler, F.; Moseler, M.; Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 2006, 97, 170201. doi: 10.1103/PhysRevLett.97.170201

    65. [65]

      Alexander, S. Amorphous solids: Their structure, lattice dynamics and elasticity. Phys. Rep. 1998, 296, 65–236. doi: 10.1016/S0370-1573(97)00069-0

    66. [66]

      Wyart, M. On the rigidity of amorphous solids. Ann. Phys. 2005, 30, 1–+. doi: 10.1051/anphys:2006003

    67. [67]

      Ellenbroek, W. G.; Somfai, E.; van Hecke, M.; van Saarloos, W. Critical scaling in linear response of frictionless granular packings near jamming. Phys. Rev. Lett. 2006, 97, 258001. doi: 10.1103/PhysRevLett.97.258001

    68. [68]

      Olsson, P.; Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 2007, 99, 178001. doi: 10.1103/PhysRevLett.99.178001

    69. [69]

      Wang, L.; Xu, N. Critical scaling in thermal systems near the zero-temperature jamming transition. Soft Matter 2013, 9, 2475–2483. doi: 10.1039/c2sm27148f

    70. [70]

      Liao, Q.; Xu, N. Criticality of the zero-temperature jamming transition probed by self-propelled particles. Soft Matter 2018, 14, 853–860. doi: 10.1039/C7SM01909B

    71. [71]

      Liu, H.; Xie, X.; Xu, N. Finite size analysis of zero-temperature jamming transition under applied shear stress by minimizing a thermodynamic-like potential. Phys. Rev. Lett. 2014, 112, 145502. doi: 10.1103/PhysRevLett.112.145502

    72. [72]

      Drocco, J. A.; Hastings, M. B.; Reichhardt, C. J. O.; Reichhardt, C. Multiscaling at point J: Jamming is a critical phenomenon. Phys. Rev. Lett. 2005, 95. doi: 10.1103/PhysRevLett.95.088001

    73. [73]

      Keys, A. S.; Abate, A. R.; Glotzer, S. C.; Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 2007, 3, 260–264. doi: 10.1038/nphys572

    74. [74]

      Head, D. A. Critical scaling and aging in cooling systems near the jamming transition. Phys. Rev. Lett. 2009, 102, 138001. doi: 10.1103/PhysRevLett.102.138001

    75. [75]

      Hatano, T. Scaling properties of granular rheology near the jamming transition. J. Phys. Soc. Japan 2008, 77, 123002. doi: 10.1143/JPSJ.77.123002

    76. [76]

      Goodrich, C. P.; Liu, A. J.; Nagel, S. R. Finite-size scaling at the jamming transition. Phys. Rev. Lett. 2012, 109, 095704. doi: 10.1103/PhysRevLett.109.095704

    77. [77]

      Graves, A. L.; Nashed, S.; Padgett, E.; Goodrich, C. P.; Liu, A. J.; Sethna, J. P. Pinning susceptibility: The effect of dilute, quenched disorder on jamming. Phys. Rev. Lett. 2016, 116, 235501. doi: 10.1103/PhysRevLett.116.235501

    78. [78]

      Xu, N.; Vitelli, V.; Wyart, M.; Liu, A. J.; Nagel, S. R. Energy transport in jammed sphere packings. Phys. Rev. Lett. 2009, 102, 038001. doi: 10.1103/PhysRevLett.102.038001

    79. [79]

      Silbert, L. E.; Liu, A. J.; Nagel, S. R. Structural signatures of the unjamming transition at zero temperature. Phys. Rev. E 2006, 73, 041304.

    80. [80]

      Plischke, M.; Bergersen, B. Equilibrium statistical physics, World Scientific Publishing Co. Pte. Ltd., 2007.

    81. [81]

      Wang, X.; Zheng, W.; Wang, L.; Xu, N. Disordered solids without well-defined transverse phonons: The nature of hard-sphere glasses. Phys. Rev. Lett. 2015, 114, 035502. doi: 10.1103/PhysRevLett.114.035502

    82. [82]

      Xu, N.; Vitelli, V.; Liu, A. J.; Nagel, S. R. Anharmonic and quasi-localized vibrations in jammed solids-Modes for mechanical failure. Europhys. Lett. 2010, 90, 56001. doi: 10.1209/0295-5075/90/56001

    83. [83]

      Phillips, W. A. Amorphous solids. Low temperature properties. Berlin, SpringerVerlag, 1981.

    84. [84]

      Chumakov, A. I.; Sergueev, I.; van Burck, U.; Schirmacher, W.; Asthalter, T.; Ruffer, R.; Leupold, O.; Petry, W. Collective nature of the boson peak and universal transboson dynamics of glasses. Phys. Rev. Lett. 2004, 92, 245508. doi: 10.1103/PhysRevLett.92.245508

    85. [85]

      Sokolov, A. P.; Buchenau, U.; Steffen, W.; Frick, B.; Wischnewski, A. Comparison of Raman- and neutron-scattering data for glass-forming systems. Phys. Rev. B 1995, 52, R9815–R9818. doi: 10.1103/PhysRevB.52.R9815

    86. [86]

      Schober, H. R.; Ruocco, G. Size effects and quasilocalized vibrations. Phil. Mag. 2004, 84, 1361–1372. doi: 10.1080/14786430310001644107

    87. [87]

      Allen, P. B.; Feldman, J. L.; Fabian, J.; Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Phil. Mag. B 1999, 79, 1715–1731. doi: 10.1080/13642819908223054

    88. [88]

      Widmer-Cooper, A.; Perry, H.; Harrowell, P.; Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 2008, 4, 711–715. doi: 10.1038/nphys1025

    89. [89]

      Ioffe, A. F.; Regel, A. R. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semiconductors 1960, 4, 237–291.

    90. [90]

      Shintani, H.; Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 2008, 7, 870–877. doi: 10.1038/nmat2293

    91. [91]

      Hansen, J. P.; McDonald, I. R. Theory of simple liquids. Elsevier, Amsterdam, 1986.

    92. [92]

      Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143. doi: 10.1103/RevModPhys.85.1143

    93. [93]

      Bechinger, C.; Di Leonardo, R.; Loewen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006. doi: 10.1103/RevModPhys.88.045006

    94. [94]

      Briand, G.; Schindler, M.; Dauchot, O. Spontaneously flowing crystal of self-propelled particles. Phys. Rev. Lett. 2018, 120, 208001. doi: 10.1103/PhysRevLett.120.208001

    95. [95]

      Berthier, L. Nonequilibrium glassy dynamics of self-propelled hard disks. Phys. Rev. Lett. 2014, 112, 220602. doi: 10.1103/PhysRevLett.112.220602

    96. [96]

      Bialke, J.; Loewen, H.; Speck, T. Microscopic theory for the phase separation of self-propelled repulsive disks. Europhys. Lett. 2013, 103, 30008. doi: 10.1209/0295-5075/103/30008

    97. [97]

      Bialke, J.; Siebert, J. T.; Loewen, H.; Speck, T. Negative interfacial tension in phaseseparated active brownian particles. Phys. Rev. Lett. 2015, 115, 098301. doi: 10.1103/PhysRevLett.115.098301

    98. [98]

      Bialke, J.; Speck, T.; Loewen, H. Active colloidal suspensions: Clustering and phase behavior. J. Non-Cryst. Solids 2015, 407, 367–375. doi: 10.1016/j.jnoncrysol.2014.08.011

    99. [99]

      Buttinoni, I.; Bialke, J.; Kuemmel, F.; Loewen, H.; Bechinger, C.; Speck, T. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 2013, 110, 238301. doi: 10.1103/PhysRevLett.110.238301

    100. [100]

      Fily, Y.; Henkes, S.; Marchetti, M. C. Freezing and phase separation of self-propelled disks. Soft Matter 2014, 10, 2132–2140. doi: 10.1039/C3SM52469H

    101. [101]

      Fily, Y.; Marchetti, M. C. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 2012, 108, 235702. doi: 10.1103/PhysRevLett.108.235702

    102. [102]

      Henkes, S.; Fily, Y.; Marchetti, M. C. Active jamming: Self-propelled soft particles at high density. Phys. Rev. E 2011, 84, 040301. doi: 10.1103/PhysRevE.84.040301

    103. [103]

      Marchetti, M. C.; Fily, Y.; Henkes, S.; Patch, A.; Yllanes, D. Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr. opinion in colloid & interf. Sci. 2016, 21, 34–43.

    104. [104]

      Mognetti, B. M.; Saric, A.; Angioletti-Uberti, S.; Cacciuto, A.; Valeriani, C.; Frenkel, D. Living clusters and crystals from low-density suspensions of active colloids. Phys. Rev. Lett. 2013, 111, 245702. doi: 10.1103/PhysRevLett.111.245702

    105. [105]

      Ni, R.; Stuart, M. A. C.; Dijkstra, M. Pushing the glass transition towards random close packing using self-propelled hard spheres. Nat. Commun. 2013, 4, 2704. doi: 10.1038/ncomms3704

    106. [106]

      Palacci, J.; Sacanna, S.; Steinberg, A. P.; Pine, D. J.; Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 2013, 339, 936–940. doi: 10.1126/science.1230020

    107. [107]

      Redner, G. S.; Hagan, M. F.; Baskaran, A. Structure and dynamics of a phaseseparating active colloidal fluid. Phys. Rev. Lett. 2013, 110, 055701. doi: 10.1103/PhysRevLett.110.055701

    108. [108]

      Reichhardt, C.; Reichhardt, C. J. O. Active matter transport and jamming on disordered landscapes. Phys. Rev. E 2014, 90, 012701.

    109. [109]

      Reichhardt, C.; Reichhardt, C. J. O. Absorbing phase transitions and dynamic freezing in running active matter systems. Soft Matter 2014, 10, 7502–7510. doi: 10.1039/C4SM01273A

    110. [110]

      Theurkauff, I.; Cottin-Bizonne, C.; Palacci, J.; Ybert, C.; Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 2012, 108, 268303. doi: 10.1103/PhysRevLett.108.268303

    111. [111]

      Yang, X.; Manning, M. L.; Marchetti, M. C. Aggregation and segregation of confined active particles. Soft Matter 2014, 10, 6477–6484. doi: 10.1039/C4SM00927D

    112. [112]

      Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095–+. doi: 10.1038/nmat4696

    113. [113]

      Tong, H.; Tan, P.; Xu, N. From crystals to disordered crystals: A hidden order-disorder transition. Sci. Rep. 2015, 5, 15378. doi: 10.1038/srep15378

    114. [114]

      Mizuno, H.; Mossa, S.; Barrat, J.-L. Elastic heterogeneity, vibrational states, and thermal conductivity across an amorphisation transition. Europhys. Lett. 2013, 104, 56001. doi: 10.1209/0295-5075/104/56001

    115. [115]

      Goodrich, C. P.; Liu, A. J.; Nagel, S. R. Solids between the mechanical extremes of order and disorder. Nat. Phys. 2014, 10, 578–581. doi: 10.1038/nphys3006

    116. [116]

      Zhao, C.; Tian, K.; Xu, N. New jamming scenario: From marginal jamming to deep jamming. Phys. Rev. Lett. 2011, 106, 125503. doi: 10.1103/PhysRevLett.106.125503

    117. [117]

      Wang, L.; Xu, N. Probing the glass transition from structural and vibrational properties of zero-temperature glasses. Phys. Rev. Lett. 2014, 112, 055701. doi: 10.1103/PhysRevLett.112.055701

    118. [118]

      Singh, S.; Ediger, M. D.; de Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 2013, 12, 139–144. doi: 10.1038/nmat3521

    119. [119]

      Wang, L.; Duan, Y.; Xu, N. Non-monotonic pressure dependence of the dynamics of soft glass-formers at high compressions. Soft Matter 2012, 8, 11831–11838. doi: 10.1039/c2sm26510a

    120. [120]

      Lee, S. I.; Lee, S. J. Effect of the range of the potential on two-dimensional melting. Phys. Rev. E 2008, 78, 041504. doi: 10.1103/PhysRevE.78.041504

    121. [121]

      Bolhuis, P.; Hagen, M.; Frenkel, D. Isostructural solid-solid transition in crystalline systems with short-ranged interaction. Phys. Rev. E 1994, 50, 4880–4890. doi: 10.1103/PhysRevE.50.4880

    122. [122]

      Zu, M.; Tan, P.; Xu, N. Forming quasicrystals by monodisperse soft core particles. Nat. Commun. 2017, 8, 2089. doi: 10.1038/s41467-017-02316-3

    123. [123]

      Dzugutov, M. Phason dynamics and atomic transport in an equilibrium dodecagonal quasi-crystal. Europhys. Lett. 1995, 31, 95–100. doi: 10.1209/0295-5075/31/2/006

    124. [124]

      Kalugin, P. A.; Katz, A. A mechanism for self-diffusion in quasi-crystals. Europhys. Lett. 1993, 21, 921–926. doi: 10.1209/0295-5075/21/9/008

    125. [125]

      Roth, J.; Gahler, F. Atomic self-diffusion in dodecagonal quasicrystals. Euro. Phys. J. B 1998, 6, 425–445. doi: 10.1007/s100510050570

    126. [126]

      Watzlawek, M.; Likos, C. N.; Lowen, H. Phase diagram of star polymer solutions. Phys. Rev. Lett. 1999, 82, 5289–5292. doi: 10.1103/PhysRevLett.82.5289

    127. [127]

      Osterman, N.; Babic, D.; Poberaj, I.; Dobnikar, J.; Ziherl, P. Observation of condensed phases of quasiplanar core-softened colloids. Phys. Rev. Lett. 2007, 99, 248301. doi: 10.1103/PhysRevLett.99.248301

    128. [128]

      Peng, Y.; Wang, F.; Wang, Z.; Alsayed, A. M.; Zhang, Z.; Yodh, A. G.; Han, Y. Two-step nucleation mechanism in solid-solid phase transitions. Nat. Mater. 2015, 14, 101–108. doi: 10.1038/nmat4083

    129. [129]

      Zaccarelli, E. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys.-Condens. Matter 2007, 19, 323101. doi: 10.1088/0953-8984/19/32/323101

    130. [130]

      Koeze, D. J.; Tighe, B. P. Sticky matters: Jamming and rigid cluster statistics with attractive particle interactions. Phys. Rev. Lett. 2018, 121, 188002. doi: 10.1103/PhysRevLett.121.188002

    131. [131]

      Lois, G.; Blawzdziewicz, J.; O'Hern, C. S. Jamming transition and new percolation universality classes in particulate systems with attraction. Phys. Rev. Lett. 2008, 100, 028001. doi: 10.1103/PhysRevLett.100.028001

    132. [132]

      Zheng, W.; Liu, H.; Xu, N. Shear-induced solidification of athermal systems with weak attraction. Phys. Rev. E 2016, 94, 062608. doi: 10.1103/PhysRevE.94.062608

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1347
  • HTML全文浏览量:  6
文章相关
  • 发布日期:  2019-11-01
  • 收稿日期:  2019-04-24
  • 修回日期:  2019-05-21
  • 网络出版日期:  2019-07-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章