Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives

Hao-Yu Yu Jiao Wang Jian-Wei Shao Dong Chen Shi-Chao Wang Li Wang Wan-Tai Yang

Citation:  Hao-Yu Yu, Jiao Wang, Jian-Wei Shao, Dong Chen, Shi-Chao Wang, Li Wang, Wan-Tai Yang. Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives[J]. Chinese Journal of Polymer Science, 2018, 36(12): 1303-1311. doi: 10.1007/s10118-018-2153-4 shu

Controlled Radical Polymerization of Styrene Mediated by Xanthene-9-thione and Its Derivatives

English


    1. [1]

      Mishra, A. K.; Choi, C.; Maiti, S.; Seo, Y.; Lee, K. S.; Kim, E.; Kim, J. K. Sequential synthesis of well-defined poly(vinyl acetate)-block-polystyrene and poly(vinyl alcohol)-block- polystyrene copolymers using difunctional chloroamide- xanthate iniferter. Polymer 2018, 139, 68−75 doi: 10.1016/j.polymer.2018.02.009

    2. [2]

      Kutcherlapati, S. R.; Koyilapu, R.; Jana, T. Poly(N-vinyl imidazole) grafted silica nanofillers: Synthesis by RAFT polymerization and nanocomposites with polybenzimidazole. J. Polym. Sci., Part A: Polym. Chem. 2018, 56(4), 365−375 doi: 10.1002/pola.v56.4

    3. [3]

      Díaz-Silvestre, S.; Saldívar-Guerra E.; Rivera-Vallejo, C.; Thomas, C. S.; Cabello-Romero, J.; Guerrero-Santos, R.; Jiménez-Regalado, E. Synthesis of associative block copolymers electrolytes via RAFT polymerization. Polym. Bull. 2018, 75(3), 891−907 doi: 10.1007/s00289-017-2071-6

    4. [4]

      Semsarzadeh, M. A.; Sabzevari, A. Highly effective organometallic-mediated radical polymerization of vinyl acetate using alumina-supported Co(acac)2 catalyst: A case study of adsorption and polymerization. J. Appl. Polym. Sci. 2018, 135(13), 46057 doi: 10.1002/app.v135.13

    5. [5]

      Bensabeh, N.; Ronda, J. C.; Galià, M.; Cádiz, V.; Lligadas, G.; Percec, V. SET-LRP of the hydrophobic biobased menthyl acrylate. Biomacromolecules 2018, 19(4), 1256−1268 doi: 10.1021/acs.biomac.8b00090

    6. [6]

      Matyjaszewski, K.; Tsarevsky, N. V. Macromolecular engineering by atom transfer radical polymerization. J. Am. Chem. Soc. 2014, 136(18), 6513 doi: 10.1021/ja408069v

    7. [7]

      Fu, X.; Yuan, Y.; Chen, X.; Xiao, Y.; Wang, J.;Zhou, C.; Lei, J. Use of short isobornyl methacrylate building blocks to improve the heat and oil resistance of thermoplastic elastomers via RAFT emulsion polymerization. J. Appl. Polym. Sci. 2017, 134(40), 45379 doi: 10.1002/app.v134.40

    8. [8]

      Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101(12), 3661 doi: 10.1021/cr990119u

    9. [9]

      Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101(9), 866−868

    10. [10]

      Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the scope of raft polymerization: recent advances and new horizons. Macromolecules 2015, 48(16), 5459−5469 doi: 10.1021/acs.macromol.5b00342

    11. [11]

      Li, Q. L.; Li, L.; Wang, H. S.; Wang, R.; Wang, W.; Jiang, Y. J.; Tian, Q.; Liu, J. P. The doubly thermo-responsive triblock copolymer nanoparticles prepared through seeded RAFT polymerization. Chinese J. Polym. Sci. 2017, 35(1), 66−77 doi: 10.1007/s10118-016-1859-4

    12. [12]

      Goto A.; Sato K.; Tsujii, Y.; Fukuda, T.; Moad G.; Rizzardo, E.; Thang, S. H. Mechanism and kinetics of RAFT-based living radical polymerizations of styrene and methyl methacrylate. Macromolecules 2001, 34(3), 402−408 doi: 10.1021/ma0009451

    13. [13]

      Poller, L.; Thomson, J. M. Determining the effect of side reactions on product distributions in RAFT polymerization by MALDI-TOF MS. Polym. Chem. 2015, 6(30), 5437−5450 doi: 10.1039/C5PY00838G

    14. [14]

      Ranieri, K.; Delaittre, G.; Barner-kowollik, C.; Thomas, J. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping. Macromol. Rapid Commun. 2014, 35(23), 2023 doi: 10.1002/marc.v35.23

    15. [15]

      Mayadunne, R. T. A.; Rizzardo, E.; Chiefari, J.; Chong, Y. K.; Moad, G.; Thang, S. H. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents. Macromolecules 1999, 32, 6977−6980 doi: 10.1021/ma9906837

    16. [16]

      Chiefari, J.; Mayadunne, R. T. A.; Moad, C. L.; Moad, G.; Rizzardo, E.; Postma, A.; Skidmore, M. A.; Thang, S. H. Thiocarbonylthio compounds (SC(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). effect of the activating group Z. Macromolecules 2003, 36(7), 2273−2283 doi: 10.1021/ma020883+

    17. [17]

      Moad, G.; Chiefari J, Mayadunne, R. T. A.; Moad, C. L.; Postma, A.; Rizzardo, E.; Thang, S. H. Initiating free radical polymerization. Macromol. Symp. 2002, 182, 65−80 doi: 10.1002/(ISSN)1521-3900

    18. [18]

      Moad, G.; Chiefari, J.; Chong, Y. K.; Krstina, J.; Mayadunne, R. T. A.; Postma, A.; Rizzardo, E.; Thang S. H. Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT). Polym. Int. 2000, 49(9), 993−1001 doi: 10.1002/(ISSN)1097-0126

    19. [19]

      Barner-Kowollik, C.; Quinn, J. F.; Morsley, D. R.; Davis, T. P. Modeling the reversible addition-fragmentation chain transfer process in cumyl dithiobenzoate-mediated styrene homopolymerizations: Assessing rate coefficients for the addition–fragmentation equilibrium. J. Polym. Sci., Part A: Polym. Chem. 2001, 39(9), 1353−1365 doi: 10.1002/(ISSN)1099-0518

    20. [20]

      Monteiro, M. J.; Brouwer, H. D. Intermediate radical termination as the mechanism for retardation in reversible addition-fragmentation chain transfer polymerisation. Macromolecules 2001, 34(3), 349−352 doi: 10.1021/ma001484m

    21. [21]

      Feldermann, A.; Coote, M. L.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Consistent experimental and theoretical evidence for long-lived intermediate radicals in living free radical polymerization. J. Am. Chem. Soc. 2004, 126(48), 15915−15923 doi: 10.1021/ja046292b

    22. [22]

      Toy, A. A.; Chaffey-Millar, H.; Davis, T. P.; Stenzel, M. H.; Izgorodina, E. I.; Coote, M. L.; Barner-Kowollik, C. Thioketone spin traps as mediating agents for free radical polymerization processes. Chem. Commun. 2006, 8(8), 835−837 doi: 10.1038/b515561d

    23. [23]

      Junkers, T.; Stenzel, M. H.; Davis, T. P.; Barner-Kowollik, C. Thioketone-mediated polymerization of butyl acrylate: controlling free-radical polymerization via a dormant radical species. Macromol. Rapid Commun. 2010, 28(6), 746−753 doi: 10.1002/marc.200600885

    24. [24]

      Zheng, X.; Yue, M.; Yang, P.; Li, Q.; Yang, W. Cycloketyl radical mediated living polymerization. Polym. Chem. 2012, 3(8), 1982−1986 doi: 10.1039/c2py20117h

    25. [25]

      Huang, X.; Wang, L.; Yang, W. Preparation of core-shell particles by surface-initiated cycloketyl radical mediated living polymerization. Polym. Chem. 2015, 6(37), 6664−6670 doi: 10.1039/C5PY00703H

    26. [26]

      Yao, C.; Wang, L.; Yang, W. Cycloketyl radical mediated suspension polymerization of styrene. RSC Adv. 2016, 6(74), 69743 doi: 10.1039/C6RA14396B

    27. [27]

      Wertz, S.; Leifert, D.; Studer, A. Cross dehydrogenative coupling via base-promoted homolytic aromatic substitution (BHAS): synthesis of fluorenones and xanthones. Org. Lett. 2013, 15(4), 928−931 doi: 10.1021/ol4000857

    28. [28]

      Hadjipavlou, C.; Kostakis, I. K.; Pouli, N.; Marakos, P.; Pratsinis, H.; Kletsas, D. Synthesis and antiproliferative activity of substituted benzopyranoisoindoles: a new class of cytotoxic compounds. Bioorg. Med. Chem. Lett. 2006, 16(18), 4822−4825 doi: 10.1016/j.bmcl.2006.06.074

    29. [29]

      Lakouraj, M. M.; Mohseni, S. M. Synthesis, characterization, and biological activities of organosoluble and thermally stable xanthone-based polyamides. J. Mater. Sci. 2015, 26(3), 234−244 doi: 10.1007/s10853-012-7041-7

    30. [30]

      Nakatake, D.; Yokote, Y.; Matsushima, Y.; Yazaki, R.; Ohshima, T. A highly stable but highly reactive zinc catalyst for transesterification supported by a bis(imidazole) ligand. Green Chem. 2016, 18(6), 1524−1530 doi: 10.1039/C5GC02056E

    31. [31]

      Günzler, F.; Junkers, T.; Barner-Kowollik, C. Studying the mechanism of thioketone-mediated polymerization via electrospray ionization mass spectrometry. J. Polym. Sci., Part A: Polym. Chem. 2010, 47(7), 1864−1876 doi: 10.1002/pola.23280

    32. [32]

      Rodríguez-Sanchez, I.; Glossman-Mitnik, D.; Zaragoza-Contreras, E. A. Theoretical evaluation of the order of reactivity of transfer agents utilized in RAFT polymerization: group Z. J. Mol. Model. 2010, 16(1), 95−105 doi: 10.1007/s00894-009-0524-z

    33. [33]

      Beaudoin, E.; Bertin, D.; Gigmes, D.; Marque, S. R. A.; Siri, D.; Tordo, P. Alkoxyamine C―ON bond homolysis: stereoelectronic effects. Eur. J. Org. Chem. 2006, 7, 1755−1768 doi: 10.1002/ejoc.200500725

    34. [34]

      Zubenko, D.; Tsentalovich, Y.; Lebedeva, N.; Kirilyuk, I.; Roshchupkina, G.; Zhurko, I.; Reznikov, V.; Marque, S. R. A.; Bagryanskaya, E. Laser flash photolysis and CIDNP studies of steric effects on coupling rate constants of imidazolidine nitroxide with carbon-centered radicals, methyl isobutyrate-2-yl and tert-butyl propionate-2-yl. J. Org. Chem. 2006, 71(16), 6044−6052 doi: 10.1021/jo060787x

    35. [35]

      Marchand, J.; Autissier, L.; Guillaneuf, Y.; Couturier, J. L.; Gigmes, D.; Bertin, D. SG1 nitroxide analogues: a comparative study. Aust. J. Chem. 2010, 63, 1237−1244 doi: 10.1071/CH10123

    36. [36]

      Nicolasa, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63−235 doi: 10.1016/j.progpolymsci.2012.06.002

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1340
  • HTML全文浏览量:  50
文章相关
  • 发布日期:  2018-12-01
  • 收稿日期:  2018-04-04
  • 接受日期:  2018-05-08
  • 修回日期:  2018-05-02
  • 网络出版日期:  2018-06-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章