Effects of Binding Energy of Bioinspired Sacrificial Bond on Mechanical Performance of cis-1,4-Polyisoprene with Dual-crosslink

Sheng Wang Zheng-Hai Tang Jing Huang Bao-Chun Guo

Citation:  Sheng Wang, Zheng-Hai Tang, Jing Huang, Bao-Chun Guo. Effects of Binding Energy of Bioinspired Sacrificial Bond on Mechanical Performance of cis-1,4-Polyisoprene with Dual-crosslink[J]. Chinese Journal of Polymer Science, 2018, 36(9): 1055-1062. doi: 10.1007/s10118-018-2131-x shu

Effects of Binding Energy of Bioinspired Sacrificial Bond on Mechanical Performance of cis-1,4-Polyisoprene with Dual-crosslink

English


    1. [1]

      Tanaka, Y. Structural characterization of natural polyisoprenes: solve the mystery of natural rubber based on structural study. Rubber Chem. Technol. 2001, 74(3), 355−375 doi: 10.5254/1.3547643

    2. [2]

      Hernandez, M.; Lopez-Manchado, M. A.; Sanz, A.; Nogales, A.; Ezquerra, T. A. Effects of strain-induced crystallization on the segmental dynamics of vulcanized natural rubber. Macromolecules 2011, 44(16), 6574−6580 doi: 10.1021/ma201021q

    3. [3]

      Amnuaypornsri, A.; Sakdapipanich, J.; Tanaka, Y. Green strength of natural rubber: the origin of the stress-strain behavior of natural rubber. J. Appl. Polym. Sci. 2009, 111(4), 2127−2133 doi: 10.1002/app.v111:4

    4. [4]

      Toki, S.; Sics, I.; Ran, S.; Liu, L.; Hsiao, B. S. New insights into structural development in natural rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules 2002, 35(17), 6578−6584 doi: 10.1021/ma0205921

    5. [5]

      Toki, S.; Sics, I.; Hsiao, B. S.; Murakami, S.; Tosaka, M.; Poompradub, S.; Kohjiya, S.; Ikeda, Y. J. Structural developments in synthetic rubbers during uniaxial deformation by in situ synchrotron X-ray diffraction. J. Polym. Sci., Part B: Polym. Phys. 2004, 42(6), 956−964 doi: 10.1002/(ISSN)1099-0488

    6. [6]

      Kohjiya, S.; Tosaka, M.; Furutani, M.; Ikeda, Y.; Toki, S.; Hsiao, B. S. Role of stearic acid in the strain-induced crystallization of crosslinked natural rubber and synthetic cis-1,4-polyisoprene. Polymer 2007, 48(13), 3801−3848 doi: 10.1016/j.polymer.2007.04.063

    7. [7]

      Murakami, S.; Senoo, K.; Toki, S.; Kohjiya, S. Structural development of natural rubber during uniaxial stretching by in situ wide angle X-ray diffraction using a synchrotron radiation. Polymer 2002, 43(7), 2117−2120 doi: 10.1016/S0032-3861(01)00794-7

    8. [8]

      Trabelsi, S.; Albouy, P. A.; Rault, J. Stress-induced crystallization around a crack tip in natural rubber. Macromolecules 2002, 35(27), 10054−10061 doi: 10.1021/ma021106c

    9. [9]

      Liu, J.; Wu, S. W.; Tang, Z. H.; Lin, T. F.; Guo, B. C.; Huang, G. S. New evidence disclosed for networking in natural rubber by dielectric relaxation spectroscopy. Soft Matter 2015, 11(11), 2290−2299 doi: 10.1039/C4SM02521K

    10. [10]

      Liu, J.; Tang, Z. H.; Huang, J.; Guo, B. C.; Huang, G. S. Promoted strain-induced-crystallization in synthetic cis-1,4-polyisoprene via constructing sacrificial bonds. Polymer 2016, 97, 580−588 doi: 10.1016/j.polymer.2016.06.001

    11. [11]

      Tosaka, M.; Murakami, S.; Poompradub, S.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Hsiao, B. S. Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 2004, 37(9), 3299−3309 doi: 10.1021/ma0355608

    12. [12]

      Ikeda, Y.; Yasuda, Y.; Hijikata, K.; Tosaka, M.; Kohjiya, S. Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules 2008, 41(15), 5876−5884 doi: 10.1021/ma800144u

    13. [13]

      Toki, S.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J. New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction. Polymer 2009, 50(9), 2142−2148 doi: 10.1016/j.polymer.2009.03.001

    14. [14]

      Amnuaypornsri, S.; Toki, S.; Hsiao, B. S.; Sakdapipanich, J. The effects of endlinking network and entanglement to stress-strain relation and strain-induced crystallization of unvulcanized and vulcanized natural rubber. Polymer 2012, 53(15), 3325−3330 doi: 10.1016/j.polymer.2012.05.020

    15. [15]

      Toki, S.; Che, J.; Rong, L. X.; Hsiao, B. S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J. Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 2013, 46(13), 5238−5248 doi: 10.1021/ma400504k

    16. [16]

      Carretero-Gonzalez, J.; Verdejo, R.; Toki, S.; Hsiao, B. S.; Giannelis, E. P.; López-Manchado, M. A. Real-time crystallization of organoclay nanoparticle filled natural rubber under stretching. Macromolecules 2008, 41(7), 2295−2298 doi: 10.1021/ma7028506

    17. [17]

      Carretero-Gonzalez, J.; Retsos, H.; Verdejo, R.; Toki, S.; Hsiao, B. C.; Giannelis, E. P.; López-Manchado, M. A. Effect of nanoclay on natural rubber microstructure. Macromolecules 2008, 41(18), 6763−6772 doi: 10.1021/ma800893x

    18. [18]

      Wu, X.; Lin, T. F.; Tang, Z. H.; Guo, B. C.; Huang, G. S. Natural rubber/graphene oxide composites: effect of sheet size on mechanical properties and straininduced crystallization behavior. Express Polym. Lett. 2015, 9(80), 672−685

    19. [19]

      Nie, Y. J.; Huang, G. S.; Qu, L. L.; Wang, X. A.; Weng, G. S.; Wu, J. R. New insights into thermodynamic description of strain-induced crystallization of peroxide cross-linked natural rubber filled with clay by tube model. Polymer 2011, 52(14), 3234−3242 doi: 10.1016/j.polymer.2011.05.004

    20. [20]

      Bitinis, N.; Hernandez, M.; Verdejo, R.; Kenny, J. M.; Lopez-Manchado, M. A. Recent advances in clay/polymer nanocomposites. Adv. Mater. 2011, 23(44), 5229−5236 doi: 10.1002/adma.v23.44

    21. [21]

      Tang, Z. H.; Zhang, L. Q.; Feng, W. J.; Guo, B. C.; Liu, F.; Jia, D. M. Rational design of graphene surface chemistry for high performance rubber/graphene composites. Macromolecules 2014, 47(24), 8663−8673 doi: 10.1021/ma502201e

    22. [22]

      Kaang, S.; Gong, D.; Nah, C. Some physical characteristics of double-networked natural rubber. J. Appl. Polym. Sci. 1997, 65(5), 917−924 doi: 10.1002/(ISSN)1097-4628

    23. [23]

      Genesky, G. D.; Aguilera-Mercado, B. M.; Bhawe, D. M.; Escobedo, F. A.; Cohen, C. Experiments and simulations: enhanced mechanical properties of end-linked bimodal elastomers. Macromolecules 2008, 41(21), 8231−8241 doi: 10.1021/ma801065x

    24. [24]

      Becker, N.; Oroudjev, E.; Mutz, S.; Cleveland, J. P.; Hansma, P. K.; Hayashi, C. Y.; Makarov, D. E.; Hansma, H. G. Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2003, 2, 278−283 doi: 10.1038/nmat858

    25. [25]

      Degtyar, E.; Harrington, M. J.; Politi, Y.; Fratzl, P. The mechanical role of metal ions in biogenic protein-based materials. Angew. Chem. Int. Ed. 2014, 53(45), 12026−12044 doi: 10.1002/anie.201404272

    26. [26]

      Fantner, G. E.; Hassenkam, T.; Kindt, J. H.; Weaver, J. C.; Birkedal, H.; Pechenik, L.; Cutroni, J. A.; Cidade, G. A.; Stucky, G. D.; Morse, D. E.; Hansma, P. K. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 2005, 4(8), 612−616 doi: 10.1038/nmat1428

    27. [27]

      Wang, W. Y.; Elbanna, A. Crack propagation in bone on the scale of mineralized collagen fibrils: role of polymers with sacrificial bonds and hidden length. Bone 2014, 68, 20−31 doi: 10.1016/j.bone.2014.07.035

    28. [28]

      Fullenkamp, D. E.; He, L. H.; Barrett, D. G.; Burghardt, W. R.; Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46(3), 1167−1174 doi: 10.1021/ma301791n

    29. [29]

      Rose, S.; Dizeux, A.; Narita, T.; Hourdet, D.; Marcellan, A. Time dependence of dissipative and recovery processes in nanohybrid hydrogels. Macromolecules 2013, 46(10), 4095−4104 doi: 10.1021/ma400447j

    30. [30]

      Luo, F.; Sun, T. L.; Nakajima, T.; Kurokawa, T.; Zhao, Y.; Sato, K.; Ihsan, A. B.; Li, X.; Guo, H.; Gong, J. P. Oppositely charged polyelectrolytes form tough, self-healing, and rebuildable hydrogels. Adv. Mater. 2015, 27(17), 2722 doi: 10.1002/adma.v27.17

    31. [31]

      Gold, B. J.; Hovelmann, C. H.; Weiss, C.; Radulescu, A.; Allgaier, J.; Pyckhout-Hintzen, W.; Wischnewski, A.; Richter, D. Sacrificial bonds enhance toughness of dual polybutadiene networks. Polymer 2016, 87, 123−128 doi: 10.1016/j.polymer.2016.01.077

    32. [32]

      Luo, M. C.; Jian, Z.; Fu, X.; Huang, G. S.; Wu, J. R. Toughening diene elastomers by strong hydrogen bond interactions. Polymer 2016, 106, 21−28 doi: 10.1016/j.polymer.2016.10.056

    33. [33]

      Tang, Z. H.; Huang, J.; Guo, B. C.; Zhang, L. Q.; Liu, F. Bioinspired engineering of sacrificial metal-ligand bonds into elastomers with supramechanical performance and adaptive recovery. Macromolecules 2016, 49(5), 1781−1789 doi: 10.1021/acs.macromol.5b02756

    34. [34]

      Liu, J.; Wang, S.; Tang, Z. H.; Guo, B. C.; Huang, G. S. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high performance elastomer. Macromolecules 2016, 49(22), 8593−8604 doi: 10.1021/acs.macromol.6b01576

    35. [35]

      Faul, C. F. J.; Antonietti, M. Ionic self-assembly: facile synthesis of supramolecular materials. Adv. Mater. 2003, 15(9), 673−683 doi: 10.1002/adma.200300379

    36. [36]

      Malmierca, M. A.; GonzalezJimenez, A.; MoraBarrantes, I.; Posadas, P.; Rodriguez, A.; Ibarra, L.; Nogales, A.; Saalwachter, K.; Valentin, J. L. Characterization of network structure and chain dynamics of elastomeric ionomers by means of 1H low-field NMR. Macromolecules 2014, 47(16), 5655−5667 doi: 10.1021/ma501208g

    37. [37]

      Basu, D.; Das, A.; Stockelhuber, K. W.; Jehnichen, D.; Formanek, P.; Sarlin, E.; Vuorinen, J.; Heinrich, G. Evidence for an in situ developed polymer phase in ionic elastomers. Macromolecules 2014, 47(10), 3436−3450 doi: 10.1021/ma500240v

    38. [38]

      Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489(7414), 133−136 doi: 10.1038/nature11409

    39. [39]

      Makowski, H. S., Lundberg, R. D. and Singha, G. H., 1975, U.S. Pat., 3,870,841.

    40. [40]

      Zheng, L. Z.; Eisenberg, A. Dynamic mechanical properties of sulfonated cyclized cis-1,4-polyisoprene. Appl. Polym. Sci. 1982, 27(2), 657−671 doi: 10.1002/app.1982.070270229

    41. [41]

      Zhang, L.; Kucera, L. R.; Ummadisetty, S.; Nykaza, J. R.; Elabd, Y. A.; Storey, R. F.; Cavicchi, K. A.; Weiss, R. A. Supramoleclar multiblock polystyrene-polyisobutylene copolymers via ionic interactions. Macromolecules 2014, 47(13), 4387−4396 doi: 10.1021/ma500934e

    42. [42]

      Mohammed, O. F.; Pines, D.; Dreyer, J. Sequential proton transfer through water bridges in acid-base reactions. Science 2005, 310(5745), 83−86 doi: 10.1126/science.1117756

    43. [43]

      Yount, W. C.; Loveless, D. M.; Craig, S. L. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J. Am. Chem. Soc. 2005, 127(41), 14488−14496 doi: 10.1021/ja054298a

    44. [44]

      Yount, W. C.; Loveless, D. M.; Craig, S. L. Strong means slow: dynamic contributions to the bulk mechanical properties of supramolecular networks. Angew. Chem. Int. Ed. 2005, 44(18), 2746−2748 doi: 10.1002/(ISSN)1521-3773

    45. [45]

      Meyers, M. A.; Mckittrick, J.; Chen, P. Y. Structural biological materials: critical mechanics materials connections. Science 2013, 339(6121), 773−779 doi: 10.1126/science.1220854

    46. [46]

      Fu, X.; Huang, G. S.; Xie, Z. T.; Wang, X. New insights into reinforcement mechanism of nanoclay-filled isoprene rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. RSC Adv. 2015, 5(32), 25171−25182 doi: 10.1039/C5RA02123E

    47. [47]

      Wu, S. W.; Qiu, M.; Tang, Z. H.; Liu, J.; Guo, B. C. Carbon nanodots as high-functionality cross-linkers for bioinspired engineering of multiple sacrificial units toward strong yet tough elastomers. Macromolecules 2017, 50(8), 3244−3253 doi: 10.1021/acs.macromol.7b00483

    48. [48]

      Weng, G. S.; Huang, G. S.; Qu, L. L.; Nie, Y. J.; Wu, J. R. Large-scale orientation in a vulcanized stretched natural rubber network: proved by in situ synchrotron X-ray diffraction characterization. J. Phys. Chem. B 2010, 114(21), 7179−7188 doi: 10.1021/jp100920g

    49. [49]

      Ren, Y. H.; Zhao, S. H.; Yao, Q.; Li, Q. Q.; Zhang, X. Y.; Zhang, L. Q. Effects of plasticizers on the strain-induced crystallization and mechanical properties of natural rubber and synthetic polyisoprene. RSC Adv. 2015, 5(15), 11317−11324 doi: 10.1039/C4RA13504K

    50. [50]

      Qu, L. L.; Huang, G. S.; Zhang, Z. P.; Nie, Y. J.; Weng G. S.; Wu, J. R. Synergistic reinforcement of nanoclay and carbon black in natural rubber. Polym. Int. 2010, 59(10), 1397−1402 doi: 10.1002/pi.v59:10

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1741
  • HTML全文浏览量:  45
文章相关
  • 发布日期:  2018-09-01
  • 收稿日期:  2017-12-19
  • 接受日期:  2018-02-21
  • 修回日期:  2018-02-21
  • 网络出版日期:  2018-04-04
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章