Citation: Qing-Hai Hao, Zhen Zheng, Gang Xia, Hong-Ge Tan. Brownian Dynamics Simulations of Rigid Polyelectrolyte Chains Grafting to Spherical Colloid[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 791-798. doi: 10.1007/s10118-018-2042-x shu

Brownian Dynamics Simulations of Rigid Polyelectrolyte Chains Grafting to Spherical Colloid

  • Corresponding author: Qing-Hai Hao, qhhao@cauc.edu.cn Hong-Ge Tan, hgtan@cauc.edu.cn
  • Received Date: 11 August 2017
    Accepted Date: 11 September 2017
    Available Online: 15 January 2018

  • Brownian dynamics simulations are employed to explore the effects of chain stiffness and trivalent salt concentration on the conformational behavior of spherical polyelectrolyte brush. The rigid brush adopts bundle-like morphology at a wide range of trivalent salt concentration. The number variation of bundles pinned on the colloid surface shows a non-monotonic profile as a function of the chain stiffness. The radial distributions of monomers and ions and the charge ratio between condensed ions and monomers are calculated. The charge inversion is observed for the high salt concentration regardless of chain rigidity. Furthermore, the pair correlation functions of monomer-monomer and monomer-salt cation are used to elucidate the aggregated mechanism of the bundle-like structure.
  • 加载中
    1. [1]

      Pincus P.. Colloid stabilization with grafted polyelectrolyte brushes[J]. Macromolecules, 1991,24(10):2912-2919. doi: 10.1021/ma00010a043

    2. [2]

      Kreer T.. Polymer-brush lubrication:a review of recent theoretical advances[J]. Soft Matter, 2016,12(15):3479-3501. doi: 10.1039/C5SM02919H

    3. [3]

      Li B., Yu B., Wang X. L., Guo F., Zhou F.. Correlation between conformation change of polyelectrolyte brushes and lubrication[J]. Chinese J. Polym. Sci., 2015,33(1):163-172. doi: 10.1007/s10118-015-1564-8

    4. [4]

      Motornov M., Tam T. K., Pita M., Tokarev I., Katz E., Minko S.. Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes:approaching 'smart' drug delivery systems[J]. Nanotechnology, 2009,20(43)434006. doi: 10.1088/0957-4484/20/43/434006

    5. [5]

      Stuart M. A. C., Huck W. T. S., Genzer J., Muller M., Ober C., Stamm M., Sukhorukov G. B., Szleifer I., Tsukruk V. V., Urban M., Winnik F., Zauscher S., Luzinov I., Minko S.. Emerging applications of stimuli-responsive polymer materials[J]. Nat. Mater., 2010,9(2):101-113. doi: 10.1038/nmat2614

    6. [6]

      Binder K., Milchev A.. Polymer brushes on flat and curved surfaces:How computer simulations can help to test theories and to interpret experiments[J]. J. Polym. Sci., Part B:Polym. Phys., 2012,50(50):1515-1555.  

    7. [7]

      Das S., Banik M., Chen G., Sinhaa S., Mukherjeeb R.. Polyelectrolyte brushes:theory, modelling, synthesis and applications[J]. Soft Matter, 2015,11(44):8550-8583. doi: 10.1039/C5SM01962A

    8. [8]

      Yu X., Wang W., Li L., Guo X., Zhou Z., Wang F.. Analysis of spherical polyelectrolyte brushes by small angle X-ray scattering[J]. Chinese J. Polym. Sci., 2014,32(6):778-785. doi: 10.1007/s10118-014-1456-3

    9. [9]

      Willott J. D., Murdoch T. J., Webber G. B., Wanless E. J.. Physicochemical behaviour of cationic polyelectrolyte brushes[J]. Prog. Polym. Sci., 2017,64:52-75. doi: 10.1016/j.progpolymsci.2016.09.010

    10. [10]

      Guenoun P., Muller F., Delsanti M., Auvray L., Chen Y. J., Mays J. W., Tirrell M.. Rodlike behavior of polyelectrolyte brushes[J]. Phys. Rev. Lett., 1998,81(18):3872-3875. doi: 10.1103/PhysRevLett.81.3872

    11. [11]

      Shen G., Tercero N., Gaspar M. A., Varughese B., Shepard K., Levicky R.. Charging behavior of single-stranded DNA polyelectrolyte brushes[J]. J. Am. Chem. Soc., 2006,128(26):8427-8433. doi: 10.1021/ja0571500

    12. [12]

      Kegler K., Salomo M., Kremer F.. Forces of interaction between DNA-grafted colloids:an optical tweezer measurement[J]. Phys. Rev. Lett., 2007,98(5)058304. doi: 10.1103/PhysRevLett.98.058304

    13. [13]

      Fazli H., Golestanian R., Hansen P.L., Kolahchi M. R.. Rod-like polyelectrolyte brushes with mono and multivalent counterions[J]. Europhys. Lett., 2006,73(3):429-435. doi: 10.1209/epl/i2005-10396-3

    14. [14]

      Likos C. N., Blaak R., Wynveen A.. Computer simulations of polyelectrolyte stars and brushes[J]. J. Phys.:Condens. Matter, 2008,20(49)494221. doi: 10.1088/0953-8984/20/49/494221

    15. [15]

      Wynveen A., Likos C. N.. Interactions between planar stiff polyelectrolyte brushes[J]. Phys. Rev. E, 2009,80(1)010801. doi: 10.1103/PhysRevE.80.010801

    16. [16]

      Wynveen A., Likos C. N.. Interactions between planar polyelectrolyte brushes:effects of stiffness and salt[J]. Soft Matter, 2010,6(1):163-171. doi: 10.1039/B919808C

    17. [17]

      Cao Q. Q., Zuo C. C., Li L. J.. Molecular dynamics simulations of end-grafted centipede-like polymers with stiff charged side chains[J]. Eur. Phys. J. E, 2010,32(1):1-12. doi: 10.1140/epje/i2010-10585-3

    18. [18]

      Cao Q. Q., Zuo C. C., Li L. J., Yan G.. Effects of chain stiffness and salt concentration on responses of polyelectrolyte brushes under external electric field[J]. Biomicrofluidics, 2011,5(4). doi: 10.1063/1.3672190

    19. [19]

      Cao Q. Q., You H.. Polyampholyte brushes grafted on the surface of a spherical cavity:effect of the charged monomer sequence, grafting density, and chain stiffness[J]. Langmuir, 2015,31(23):6375-6384. doi: 10.1021/acs.langmuir.5b01190

    20. [20]

      Lieleg O., Schmoller K. M., Cyron C. J., Luan Y., Wall W. A., Bausch A. R.. Structural polymorphism in heterogeneous cytoskeletal networks[J]. Soft Matter, 2009,5(9):1796-1803. doi: 10.1039/b814555p

    21. [21]

      Wang Z., Sheetz M. P.. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity[J]. Biophys. J., 2000,78(4):1955-1964. doi: 10.1016/S0006-3495(00)76743-9

    22. [22]

      Fazli H., Mohammadinejad S., Golestanian R.. Salt-induced aggregation of stiff polyelectrolytes[J]. J. Phys.:Condens. Matter, 2009,21(42)424111. doi: 10.1088/0953-8984/21/42/424111

    23. [23]

      Sayar M., Holm C.. Equilibrium polyelectrolyte bundles with different multivalent counterion concentrations[J]. Phys. Rev. E, 2010,82(3)031901. doi: 10.1103/PhysRevE.82.031901

    24. [24]

      Tom A. M., Rajesh R., Vemparala S.. Aggregation dynamics of rigid polyelectrolytes[J]. J. Chem. Phys., 2016,144(3). doi: 10.1063/1.4939870

    25. [25]

      Li Y., Jiang T., Wang L., Lin S., Lin J.. Self-assembly of rod-coil-rod triblock copolymers:a route toward hierarchical liquid crystalline structures[J]. Polymer, 2016(103):64-72.  

    26. [26]

      Li Y., Jiang T., Lin S., Lin J., Cai C., Zhu X.. Hierarchical nanostructures self-assembled from a mixture system containing rod-coil block copolymers and rigid homopolymers[J]. Sci. Rep., 2015,5. doi: 10.1038/srep10137

    27. [27]

      Guan Z., Wang L., Lin J.. Interaction pathways between plasma membrane and block copolymer micelles[J]. Biomacromolecules, 2017,18(3):797-807. doi: 10.1021/acs.biomac.6b01674

    28. [28]

      Kremer K., Grest G. S.. Dynamics of entangled linear polymer melts:a molecular-dynamics simulation[J]. J. Chem. Phys., 1990,92(8):5057-5086. doi: 10.1063/1.458541

    29. [29]

      Yeh I. C., Berkowitz M. L.. Ewald summation for systems with slab geometry[J]. J. Chem. Phys., 1999,111(7):3155-3162. doi: 10.1063/1.479595

    30. [30]

      Plimpton S. J.. Fast parallel algorithms for short-range molecular dynamics[J]. J. Comput. Phys., 1995,117(1):1-19.  

    31. [31]

      Pathria, R. in "Statistical mechanics", 2nd ed. 2006, Elsevier, Singapore:Pte Ltd.

    32. [32]

      Varghese A., Rajesh R., Vemparala S.. Aggregation of rod-like polyelectrolyte chains in the presence of monovalent counterions[J]. J. Chem. Phys., 2012,137(23)234901. doi: 10.1063/1.4771920

    33. [33]

      Günther J. U., Ahrens H., Förster S., Helm C. A.. Bundle formation in polyelectrolyte brushes[J]. Phys. Rev. Lett., 2008,101(25)258303. doi: 10.1103/PhysRevLett.101.258303

    34. [34]

      Guptha V. S., Hsiao P. Y.. Polyelectrolyte brushes in monovalent and multivalent salt solutions[J]. Polymer, 2014,55(12):2900-2912. doi: 10.1016/j.polymer.2014.04.035

    35. [35]

      Liu L., Pincus P. A., Hyeon C.. Heterogenous morphology and dynamics of polyelectrolyte brush condensates in trivalent counterion solution[J]. Macromolecules, 2017,50(4):1579-1588. doi: 10.1021/acs.macromol.6b02685

  • 加载中
    1. [1]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    2. [2]

      Ying ChenLun LiGuohao HanRen LiuGuanghui AnYi Zhu . Macromolecular coumarin sulfonium salt with side chain effect constructed by copolymerization strategy for free radical, cationic, and hybrid photopolymerizations. Chinese Chemical Letters, 2025, 36(7): 110458-. doi: 10.1016/j.cclet.2024.110458

    3. [3]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    4. [4]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    5. [5]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    6. [6]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    7. [7]

      Huiju CaoLei Shi . sp1-Hybridized linear and cyclic carbon chain. Chinese Chemical Letters, 2025, 36(4): 110466-. doi: 10.1016/j.cclet.2024.110466

    8. [8]

      Bo-Ran ChangLin DengQing-Lian WuWan-Qian GuoHui-Ying Xue . A review: Carbon-based materials as effective additives in anaerobic fermentation, focusing on microbial chain elongation and medium chain fatty acids production. Chinese Chemical Letters, 2025, 36(7): 110411-. doi: 10.1016/j.cclet.2024.110411

    9. [9]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    10. [10]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    11. [11]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    12. [12]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    13. [13]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    14. [14]

      Min LUOXiaonan WANGYaqin ZHANGTian PANGFuzhi LIPu SHI . Porous spherical MnCo2S4 as high-performance electrode material for hybrid supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 413-424. doi: 10.11862/CJIC.20240205

    15. [15]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    16. [16]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    17. [17]

      Yuhao ZhouSiyuan WuXiaozhe RenHongjin LiShu LiTianying Yan . Effects of salt fraction on the Na+ transport in salt-in-ionic liquid electrolytes. Chinese Chemical Letters, 2025, 36(6): 110048-. doi: 10.1016/j.cclet.2024.110048

    18. [18]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    19. [19]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    20. [20]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

Metrics
  • PDF Downloads(0)
  • Abstract views(965)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return