Citation: Xing-yu Wu, Jin Ming, Jian-chao Xie, De-cheng Wan, Malval Jean Pierre. Effects of Conjugated Systems on UV-Visible Light-sensitive D-π-A Type Sulfonium Salt Photoacid Generators[J]. Chinese Journal of Polymer Science, ;2016, 34(12): 1456-1468. doi: 10.1007/s10118-016-1863-8 shu

Effects of Conjugated Systems on UV-Visible Light-sensitive D-π-A Type Sulfonium Salt Photoacid Generators

  • Corresponding author: Jin Ming, mingjin@tongji.edu.cn
  • Received Date: 24 June 2016
    Revised Date: 12 August 2016
    Accepted Date: 12 August 2016

    Fund Project: the National Natural Science Foundation of China 51173134the National Natural Science Foundation of China 51573139Fundamental Research Funds for the Central Universities and the Open Measuring Fund for Large Instrument and Equipment of Tongji University 0002015033

  • A series of D-π-A type sulfonium salt photoacid generators with different π-conjugated structures, such as triphenyl, phenylstilbene, styryl-biphenyl, and stilbene, were designed to determine the effect of molecular structures on the photochemical and photophysical properties. The mechanisms of photochemical generation of H+ were studied by UV-Vis spectroscopy, theoretical calculations, and fluorescence spectroscopy. It is found that the frontier orbits determine the absorption, the molar extinction coefficients, and the quantum yields of photoacid generation. Triphenyl systems connected with sulfonium are beneficial to increase the quantum yields of acid generation. The photoreactivity of four sulfonium salts was further evaluated through the polymerizations of various epoxide monomers at different irradiation wavelengths (365-425 nm) by using the real-time infrared spectroscopy with light-emitting diodes. The high quantum yields for acid generation (ΦH+=~0.32 to 0.58) and the high molar extinction coefficients (ε=~23500 L·mol-1·cm-1 to 31000 L·mol-1·cm-1) of the sulfonium salts lead to high conversion rates (over 50%-80%). Hence, these photoinitiators exhibit potential for the photocuring applications.
  • 加载中
    1. [1]

      Crivello, J.V. and Lam, J.H.W., Macromolecules, 1977, 10(6):1307  doi: 10.1021/ma60060a028

    2. [2]

      Beak, P. and Sullivan, T.A., J. Am. Chem. Soc., 1982, 104(16):4450  doi: 10.1021/ja00380a020

    3. [3]

      Saeva, F.D. and Morgan, B.P., J. Am. Chem. Soc., 1984, 106(15):4121  doi: 10.1021/ja00327a010

    4. [4]

      Fouassier, J.P. and Lalevée, J., "Photoinitiator for polymer synthesis-scope, reactivity, and efficiency", Wiley-VCH Berlag GmbH & Co. KGaA, Weinheim, 2012

    5. [5]

      Davidson, S., "Exploring the science, technology and application of UV and EB curing", Sita Technolgy Ltd, London, 1999

    6. [6]

      Fouassier, J.P., "Photoinitiator, photopolymerization and photocuring:fundamentals and applications", Hanser Publishers, New York, 1995

    7. [7]

      Cordon, C. and Miller, C., "UV-LED:presented by RadTech-the association for UV & EB technology", RadTech International, Bethesda, 2013

    8. [8]

      Liu, G., Zhu, X., Xu, B., Qian, X., Song, G. and Nie, J., J. Appl. Polym. Sci., 2013, 130(5):3698  doi: 10.1002/app.39612

    9. [9]

      Sui, X., Feng, X., di Luca, A., van Blitterswijk, C.A., Moroni, L., Hempenius, M.A. and Vancso, G.J., Polym. Chem., 2013, 4(2):337  doi: 10.1039/C2PY20431B

    10. [10]

      Tehfe, M.A., Dumur, F., Graff, B., Morlet-Savary, F., Fouassier, J.P., Gigmes, D. and Lalevée, J., Macromolecules, 2012, 45(21):8639  doi: 10.1021/ma301931p

    11. [11]

      Walsh, Z., Levkin, P.A., Jain, V., Paull, B., Svec, F. and Macka, M., J. Sep. Sci., 2010, 33(1):61  doi: 10.1002/jssc.v33:1

    12. [12]

      Xiao, P., Frigoli, M., Dumur, F., Graff, B., Gigmes, D., Fouassier, J.P. and Lalevée, J., Macromolecules, 2014, 47(1):106  doi: 10.1021/ma402196p

    13. [13]

      Dietlin, C., Schweizer, S., Xiao, P., Zhang, J., Morlet-Savary, F., Graff, B., Fouassier, J.P. and Lalevée, J., Polym. Chem., 2015, 6(21):3895  doi: 10.1039/C5PY00258C

    14. [14]

      Tehfe, M.A., Dumur, F., Xiao, P., Delgove, M., Graff, B., Fouassier, J.P., Gigmes, D. and Lalevée, J., Polym. Chem., 2014, 5(2):382  doi: 10.1039/C3PY00922J

    15. [15]

      Xiao, P., Hong, W., Li, Y., Dumur, F., Graff, B., Fouassier, J.P., Gigmes, D. and Lalevée, J., Polym. Chem., 2014, 5(7):2293  doi: 10.1039/c3py01599h

    16. [16]

      Zhang, J., Zivic, N., Dumur, F., Xiao, P., Graff, B., Gigmes, D., Fouassier, J.P. and Lalevée, J., J. Polym. Sci., Part A:Polym. Chem., 2015, 53(3):445  doi: 10.1002/pola.v53.3

    17. [17]

      Saeva, F.D., Garcia, E. and Martic, P.A., J. Photochem. Photobiol. A-Chem., 1995, 86(1-3):149  doi: 10.1016/1010-6030(94)03923-I

    18. [18]

      Zhou, W.H., Kuebler, S.M., Braun, K.L., Yu, T.Y., Cammack, J.K., Ober, C.K., Perry, J.W. and Marder, S.R., Science, 2002, 296(5570):1106  doi: 10.1126/science.296.5570.1106

    19. [19]

      Yanez, C.O., Andrade, C.D. and Belfield, K.D., Chem. Commun., 2009, 0(7):827

    20. [20]

      Xia, R., Malval, J.P., Jin, M., Spangenberg, A., Wan, D., Pu, H., Vergote, T., Morlet-Savary, F., Chaumeil, H., Baldeck, P., Poizat, O. and Soppera, O., Chem. Mater., 2012, 24(2):237  doi: 10.1021/cm2030075

    21. [21]

      Jin, M., Hong, H., Xie, J., Malval, J.P., Spangenberg, A., Soppera, O., Wan, D., Pu, H., Versace, D.L., Leclerc, T., Baldeck, P., Poizat, O. and Knopf, S., Polym. Chem., 2014, 5(16):4747  doi: 10.1039/C4PY00424H

    22. [22]

      De Waele, V., Hamm, M., Vergote, T., Chaumeil, H., Jin, M., Malval, J.P., Baldeck, P. and Poizat, O., Chem. Mater., 2015, 27(5):1684  doi: 10.1021/cm504474g

    23. [23]

      Jin, M., Wu, X., Xie, J., Malval, J.P. and Wan, D., RSC Adv., 2015, 5(68):55340  doi: 10.1039/C5RA11350D

    24. [24]

      Saeva, F.D., Breslin, D.T. and Luss, H.R., J. Am. Chem. Soc., 1991, 113(14):5333  doi: 10.1021/ja00014a028

    25. [25]

      Zhou, W., Kuebler, S.M., Carrig, D., Perry, J.W. and Marder, S.R., J. Am. Chem. Soc., 2002, 124(9):1897  doi: 10.1021/ja011186k

    26. [26]

      Pohlers, G., Scaiano, J.C. and Sinta, R., Chem. Mater., 1997, 9(12):3222  doi: 10.1021/cm970587p

    27. [27]

      Frisch, M.J., "Gaussian 09, Revision B.01.", Gaussian Inc, Wallingford, 2009

    28. [28]

      Fang, B., Jin, M., Wu, X., Zhang, Y. and Wan, D., Dyes Pigment., 2016, 126:54  doi: 10.1016/j.dyepig.2015.11.012

    29. [29]

      Jin, M., Xie, J., Malval, J.P., Spangenberg, A., Soppera, O., Versace, D.L., Leclerc, T., Pan, H., Wan, D., Pu, H., Baldeck, P., Poizat, O. and Knopf, S., J. Mater. Chem. C, 2014, 2(35):7201  doi: 10.1039/C4TC00706A

    30. [30]

      Jin, M., Xu, H., Hong, H., Malval, J.P., Zhang, Y., Ren, A., Wan, D. and Pu, H., Chem. Commun., 2013, 49(76):8480  doi: 10.1039/c3cc43018a

    31. [31]

      Zhou, W.H., Kuebler, S.M., Carrig, D., Perry, J.W. and Marder, S.R., J. Am. Chem. Soc., 2002, 124(9):1897  doi: 10.1021/ja011186k

    32. [32]

      Saeva, F.D., Breslin, D.T. and Luss, H.R., J. Am. Chem. Soc., 1991, 113(14):5333  doi: 10.1021/ja00014a028

    33. [33]

      Wang, X.Z., Saeva, F.D. and Kampmeier, J.A., J. Am. Chem. Soc., 1999, 121(18):4364  doi: 10.1021/ja982932x

    34. [34]

      Park, J., Kihara, N., Ikeda, T. and Endo, T., Macromolecules, 1997, 30(11):3414  doi: 10.1021/ma9610222

    35. [35]

      Kuebler, S.M., Braun, K.L., Zhou, W., Cammack, J.K., Yu, T., Ober, C.K., Marder, S.R. and Perry, J.W., J. Photochem. Photobiol., A, 2003, 158(2-3):163  doi: 10.1016/S1010-6030(03)00030-3

    36. [36]

      Yagci, Y., Jockusch, S. and Turro, N.J., Macromolecules, 2010, 43(15):6245  doi: 10.1021/ma1007545

    37. [37]

      Tehfe, M.A., Dumur, F., Contal, E., Graff, B., Morlet-Savary, F., Gigmes, D., Fouassier, J.P. and Lalevée, J., Polym. Chem., 2013, 4(5):1625  doi: 10.1039/C2PY20950K

    38. [38]

      Tehfe, M.A., Lalevée, J., Morlet-Savary, F., Graff, B., Blanchard, N. and Fouassier, J.P., ACS Macro Lett., 2011, 1(1):198

  • 加载中
    1. [1]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    2. [2]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    3. [3]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    4. [4]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    5. [5]

      Junhan LuoQi QingLiqin HuangZhe WangShuang LiuJing ChenYuexiang Lu . Non-contact gaseous microplasma electrode as anode for electrodeposition of metal and metal alloy in molten salt. Chinese Chemical Letters, 2024, 35(4): 108483-. doi: 10.1016/j.cclet.2023.108483

    6. [6]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    7. [7]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    8. [8]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    9. [9]

      Jiale ZhengMei ChenHuadong YuanJianmin LuoYao WangJianwei NaiXinyong TaoYujing Liu . Electron-microscopical visualization on the interfacial and crystallographic structures of lithium metal anode. Chinese Chemical Letters, 2024, 35(6): 108812-. doi: 10.1016/j.cclet.2023.108812

    10. [10]

      Luyao Lu Chen Zhu Fei Li Pu Wang Xi Kang Yong Pei Manzhou Zhu . Ligand effects on geometric structures and catalytic activities of atomically precise copper nanoclusters. Chinese Journal of Structural Chemistry, 2024, 43(10): 100411-100411. doi: 10.1016/j.cjsc.2024.100411

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Yadan SUNXinfeng LIQiang LIUOshio HirokiYinshan MENG . Structures and magnetism of dinuclear Co complexes based on imine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2212-2220. doi: 10.11862/CJIC.20240131

    13. [13]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    14. [14]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    15. [15]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    16. [16]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    17. [17]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    18. [18]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    19. [19]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    20. [20]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

Metrics
  • PDF Downloads(0)
  • Abstract views(1006)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return