【大学化学】doi: 10.12461/PKU.DXHX202511107
笔者在大学入学之初就受教于华彤文老师,后来跟随华老师做研究、搞教学、写教材,直至担任《大学化学》主编时依然听取华老师的教诲。在此文中分享40余年来近距离观察、感受和学习华老师严谨治学、勇于担当的教学与研究的态度和方法,期待我国的化学教育教学事业薪火相传,持续发展。
【大学化学】doi: 10.12461/PKU.DXHX202405208
将本科课程中的脑文格反应等有机化学内容与有机太阳能电池研究前沿紧密结合,通过实验让学生深入了解有机化学课程中的化学反应。该实验利用脑文格反应合成了一个宽带隙的稠环电子受体材料A831,通过对实验数据进行分析,确定材料是通过削弱端基的拉电子能力,提升了材料的最低未占有分子轨道(LUMO)能级,进而获得高电压的有机太阳能电池。该实验充分培养了学生运用基础知识解决科研问题的能力,体现了“基础知识–实际应用”的有机实验教学模式,适合作为面向高年级本科生的综合实验教学课程。
【大学化学】doi: 10.12461/PKU.DXHX202502105
二氧化碳(CO2)的大量排放引发了一系列环境问题,但同时CO2也是一种重要的碳资源。因此,捕获CO2并将其转化为高附加值化学品,已成为科学与工业领域的热点课题。从化学角度而言,CO2被视作一种稳定、安全且储量丰富的C1资源。将CO2转化为高值化学品,不仅能有效解决CO2排放问题,同时实现了CO2的资源化利用。把CO2催化环化加成到环氧化物中,制备高附加值的环状碳酸酯,是一种反应过程简单且前景可观的CO2利用策略,该反应无副产物产生,原子经济性100%,反应条件温和。本文综述了CO2化学利用途径,着重介绍了CO2环加成反应高效催化剂,并对不同类型催化剂的性能进行了比较,最后对CO2环加成反应研究进展进行了总结与展望。
【无机化学学报】doi: 10.11862/CJIC.20250169
利用固相转化法将Fe3O4纳米粒子表层转化为具有光催化活性的铁基-金属有机框架MIL-100(Fe),制备得到Fe3O4@MIL-100(Fe)核壳结构复合材料。MIL-100(Fe)的光生电子驱动了Fe3O4中的Fe3+向Fe2+的快速转化,MIL-100(Fe)的大比表面积提高了复合材料对抗生素分子的吸附性能。通过控制Fe3O4纳米粒子向MIL-100(Fe)的转化程度,优化了二者之间的协同效应,增强了光催化活化过硫酸盐降解抗生素性能。其中,最佳Fe3O4@MIL-100(Fe)表现出406 m2·g-1的高比表面积,在光催化降解50 min时的降解率达到83.0%,并在5次循环实验中表现出较高的稳定性。
【大学化学】doi: 10.3866/PKU.DXHX202308095
基于向大一学生开设的“电解-量气法测定阿伏加德罗常数”实验,设计了Cu2O的电化学合成及量气法测定阿伏加德罗常数一体化实验,该实验巧妙地融合了元素化学实验中有关Cu2O的制备及性质实验内容。一次电解完成两个实验,节约电能,节省时间。Cu2O的电化学合成及量气法测定阿伏加德罗常数一体化实验可作为一个微实验灵活穿插于大学基础化学实验教学中,对于培养大一学生的全方位思考的意识和多角度分析问题的能力以及经济、环保的理念有重要意义。
【无机化学学报】doi: 10.11862/CJIC.20240028
采用一步溶剂热法在泡沫镍(NF)基底上原位生长Cu/α-FeOOH纳米复合材料,制备了自支撑Cu/α-FeOOH/NF催化剂。相比于α-FeOOH/NF催化剂,Cu的引入为α-FeOOH的生长提供了更多的附着点,使得催化剂表面更加粗糙,并增大了催化剂与反应物的接触面积。Cu和无定形的α-FeOOH之间存在晶态和非晶态的异质界面,改变了催化剂的电子结构,促进电子从Ni、Fe向Cu转移,从而显著增强了催化剂对甲醇的吸附和氧化。电化学测试表明,Cu/α-FeOOH/NF催化剂具有优异的甲醇氧化反应(MOR)和析氢反应(HER)性能。在Cu/α-FeOOH/NF催化剂同时作为阴极、阳极的Cu/α-FeOOH/NF||Cu/α-FeOOH/NF HER-MOR耦合电解水系统中,达到10 mA·cm-2电流密度所需的电压比直接全水解系统降低了125 mV,且在较大电压(2.4 V)下能够稳定反应96 h。此外,阳极MOR产生了价值更高的甲酸盐,1.80 V下生成甲酸盐的法拉第效率高达97%。
