【无机化学学报】doi: 10.11862/CJIC.20240146
Crystalline@amorphous NiCo2S4@MoS2 (v-NCS@MS) nanostructures were designed and constructed via an ethylene glycol-induced strategy with hydrothermal synthesis and solvothermal method, which simultaneously realized the defect regulation of crystal NiCo2S4 in the core. Taking advantage of the flexible protection of an amor-phous shell and the high capacity of a conductive core with defects, the v-NCS@MS electrode exhibited high specific capacity (1 034 mAh·g-1 at 1 A·g-1) and outstanding rate capability. Moreover, a hybrid supercapacitor was assembled with v-NCS@MS as cathode and activated carbon (AC) as anode, which can achieve remarkably high specific energy of 111 Wh·kg-1 at a specific power of 219 W·kg-1 and outstanding capacity retention of 80.5% after 15 000 cycling at different current densities.
