Asymmetric Addition of 3-Thienyl Aluminum to Ketones Catalyzed by the Simple Titanium Catalytic System of (S)-1, 1'-Binaphthol

Min Ge Lijun Zhang Bing Tu Shuangliu Zhou

Citation:  Ge Min, Zhang Lijun, Tu Bing, Zhou Shuangliu. Asymmetric Addition of 3-Thienyl Aluminum to Ketones Catalyzed by the Simple Titanium Catalytic System of (S)-1, 1'-Binaphthol[J]. Chinese Journal of Organic Chemistry, 2018, 38(3): 672-676. doi: 10.6023/cjoc201710004 shu

(S)-联萘酚钛体系催化3-噻吩铝试剂对酮的不对称加成反应

    通讯作者: 张丽军, zljun@mail.ahnu.edu.cn
    周双六, slzhou@ahnu.edu.cn
  • 基金项目:

    国家自然科学基金 21372009

    国家自然科学基金(Nos.21372009,21672004)资助项目

    国家自然科学基金 21672004

摘要: 含噻吩基团的的手性芳香醇是自然界重要的活性物质,其基本结构单元广泛地存在于生物活性物质和医药中.报道了(S)-联萘酚和Ti(OiPr)4催化3-噻吩基铝试剂对酮的不对称加成反应,以较高的产率和优异的立体选择性(高达91%ee)得到相应的含有3-噻吩基乙醇.该催化体系具有广泛的适应性,能够适合含有吸电子和供电子基团的各种酮的不对称加成,得到相应的3-噻吩基乙醇.

English

  • The enantioselective addition of carbon-based nucleophiles to organic carbonyl compounds provides the most straightforward strategy for the construction of optically active alcohols.[1~5] The optically active diaryl alcohols bearing heteroaryl such as furyl, thienyl, pyridyl or indolyl groups are well-known for their biological activity as well as key substructure in bioactive compounds and pharmaceuticals.[6] However, their syntheses were sporadically reported in a few papers via addition of organometallic reagents to heteroaryl-substituted carbonyl compounds or reduction of diaryl ketones bearing heteroaryl groups.[7] The catalytic enantioselective addition of heteroaryl nucleophiles to organic carbonyl compounds provided a systematical approach to synthesize chiral heteroaryl alcohols.

    The optically active furyl alcohols have been realized through the asymmetric addition of furylaluminum reagent[8] or furyltitanium reagent[9] to ketones in the presence of 10 mol% (S)-1, 1'-binaphthol ((S)-BINOL). The optically active thienyl alcohols were also reported through the asymmetric additions of thienylboronic acid[10] or thienylaluminum reagents[11] to organic carbonyl compounds in good yields and high enantioselectivities. Recently, heteroaryl zincs[12] and titanium reagents[13] bearing thienyl, benzothienyl, furyl and indolyl groups were also applied to asymmetric addition of aldehydes affording aryl heteroaryl-or diheteroaryl-methanol derivatives in high enantio-selectivities. More recently, we have also reported the catalytic asymmetric addition of pyridylaluminums to aldehydes catalyzed by a titanium catalytic system of (R)-H8-BINOLate.[14] As a continuous research on asymmetric heteroaryl addition to organic carbonyl compounds, we herein report the catalytic asymmetric addition of 3-thienyl aluminum to ketones catalyzed by a titanium catalytic system of (S)-BINOL to afford the chiral diarylmethanols bearing 3-thienyl group.

    Asymmetric addition reactions of (3-thienyl)AlEt2-(OEt2) to acetophenone (1a) were first optimized, and the results are summarized in Table 1. Tuning the amounts of Ti(OiPr)4 and (3-thienyl)AlEt2(OEt2), the optimal reaction conditions of 3.5 equiv. of Ti(OiPr)4 and 3.0 equiv. of (3-thienyl)AlEt2(OEt2) in the presence of 10 mol% (S)-BINOL in toluene at 0 ℃ were found to afford product 3a in a 88% yield with an excellent 90% ee (Entry 7). The investigations for the choice of the solvent showed that toluene was the best one (Entries 7, 9~12). For the optimal catalytic systems, different chiral ligands (Figure 1) were test for asymmetric addition reactions (Entries 7, 13~16). Results showed that the commercially available and relatively cheap chiral ligand, (S)-BINOL, was the most efficient one to afford the chiral alcohol 3a in a 88% yield with an excellent 90% ee (Entry 7).

    Table 1

    Table 1.  Optimization of enantioselective addition of 3-thienyl aluminum to acetophenonea
    下载: 导出CSV
    Entry Ligand Ti(OiPr)4b/equiv. (3-Thienyl)Al b/equiv. Solvent Yield/% ee c/%
    1 (S)-BINOL 5.0 1.5 Toluene 21 82
    2 (S)-BINOL 5.0 2.0 Toluene 31 85
    3 (S)-BINOL 5.0 2.5 Toluene 53 84
    4 (S)-BINOL 5.0 3.0 Toluene 35 89
    5 (S)-BINOL 5.0 3.5 Toluene 40 82
    6 (S)-BINOL 2.5 3.0 Toluene 70 62
    7 (S)-BINOL 3.5 3.0 Toluene 88 90
    8 (S)-BINOL 4.0 3.0 Toluene 50 88
    9 (S)-BINOL 3.5 3.0 THF 62 84
    10 (S)-BINOL 3.5 3.0 n-Hexane 63 88
    11 (S)-BINOL 3.5 3.0 Et2O 93 81
    12 (S)-BINOL 3.5 3.0 CH2Cl2 85 31
    13 A 3.5 3.0 Toluene 50 25
    14 B 3.5 3.0 Toluene 40 -10
    15 C 3.5 3.0 Toluene 60 -51
    16 D 3.5 3.0 Toluene 45 15
    a Condition: acetophenone (1.00 mmol), solvent (5.0 mL), time: 12 h. b Equivalents of Ti(OiPr)4 and 2 are relative to acetophenone. c Enantioselectivities were determined by HPLC.

    Figure 1

    Figure 1.  Different chiral ligands

    With the optimized conditions established, the asymmetric addition of 3-thienyl aluminum reagent to functionalized ketones were then studied, and the results were listed in Table 2. For aromatic ketones with either an electron-withdrawing substituent at the aryl ring, 3-thienyl additions afforded tertiary alcohols in high yields with excellent enantioselectivities of 90% ee or higher (Entries 1~7), except for substrates of 2'-nitroacetophenone (1b) and 4'-bromoacetophenone (1e), which afforded 3b and 3e in 88% and 86% ee (Entries 2 and 5). However, for aromatic ketones with an electrondonating substituent at the aryl ring, 3-thienyl additions afforded tertiary alcohols in high yields with slight lower enantioselectivities of 88%~70% ee (Entries 8~11). For heteroaromatic ketones, 3-thienyl addition to 1-(pyridin-3-yl)ethanone furnished the product 3l in a good yield with a excellent enantioselec-tivity of 90% ee (Entry 12).

    Table 2

    Table 2.  Enantioselective addition of 3-thienyl aluminum reagent to ketonesa
    下载: 导出CSV
    Entry Ketone Product Yield/% ee/%
    1 3a 88 90
    2 3b 91 91
    3 3c 90 88
    4 3d 90 90
    5 3e 82 86
    6 3f 87 90
    7 3g 80 90
    8 3h 80 85
    9 3i 78 85
    10 3j 83 90
    11 3k 85 70
    12 3l 79 91
    a Condition: (S)-BINOL (0.10 mmol), Ti(OiPr)4 (3.50 mmol), 2 (3.00 mmol), ketone (1.00 mmol), toluene (5.0 mL). b Enantioselectivities were determined by HPLC.

    Based on the previous study of titanium-catalyzed asymmetric arylation of organozinc, organoaluminum, or organotitanium, the catalytic reactions involve the similar acitve species which are proposed to be dititanium species containing one BINOLate ligand and the nucleophile.[4a, 15] The roles of Ti(OiPr)4 in the reaction not only gave the above active dititanium species, but also reacted with 3-thienyl aluminum reagent to afford an immediate of a bimetallic complex .[4a]

    In summary, the catalytic enantioselective heteroarylation of 3-thienyl aluminum nucleophiles with various ketones has been successfully developed employing the simple titanium catalytical system of (S)-BINOL to afford a series of chiral arylethanols containing 3-thienyl groups in high yields with excellent enantioselectivities of up to 91% ee.

    All syntheses and manipulations of air-and moisture-sensitive materials were performed under a dry argon atmosphere using standard Schlenk techniques or in a glovebox. Solvents were refluxed and distilled over sodium/benzophenone under argon prior to use. 1H NMR and 13C NMR spectra in CDCl3 were recorded on a Bruker AV-300 NMR spectrometer with chemical shifts from the internal TMS. HPLC analyses were recorded with an Agilent 1200 Series spectrometer using Chiralpak column.

    Under a dry nitrogen atmosphere, (S)-BINOL (28.6 mg, 0.1 mmol) and Ti(OiPr)4 (1.04 mL, 3.5 mmol) were mixed in dry toluene (5.0 mL) at room temperature. After stirring for 30 min, (3-thienyl)AlEt2(OEt2) (3.0 mmol) was added to the resulting solution at 0 ℃. The mixture was stirred for another 10 min, and a ketone (1.0 mmol) was added to the resulting solution at 0 ℃. The mixture was allowed to react for 12 h at this temperature, and then quenched with 1.0 mol•L-1 NaOH. The aqueous phase was extracted with ethyl acetate (20.0 mL×3), dried over MgSO4, filtered and con-centrated. The residue was purified by column chro-matography to give the tertiary alcohol. Enantiomeric excesses of products were determined by HPLC using suitable chiral columns from Daicel.

    1-Phenyl-1-(thien-3-yl)ethanol (3a):[7e] Yellow oil (179 mg. 88% yield). ee=90% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=90:10, flow rate=1.0 mL/min, λ=254 nm]. tR(minor)=9.11 min, tR(major)=9.72 min. 1H NMR (300 MHz, CDCl3) δ: 7.43~7.18 (m, 7H), 6.98 (s, 1H), 2.25 (s, H), 1.94 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 149.6, 147.4, 128.1, 127.0, 126.7, 126.0, 125.4, 120.7, 74.5, 31.1.

    1-(4-Nitrophenyl)-1-(thien-3-yl)ethanol (3b): Yellow oil (227 mg. 91% yield). ee=91% [Chiralpak AD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(major)=35.537 min; tR(minor)=46.700 min. 1H NMR (300 MHz, CDCl3) δ: 8.19~8.16 (m, 2H), 7.69~7.66 (m, 2H), 7.29~7.26 (m, 1H), 6.97~5.95 (m, 2H), 2.52 (s, 1H), 2.04 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 154.3, 151.7, 147.0, 126.8, 126.3, 125.8, 124.5, 123.4, 74.4, 32.1. HRMS (ESI) calcd for C12H11O3NSNa (M+ Na+) 272.0352, found 272.0349.

    1-(2-Nitrophenyl)-1-(thien-3-yl)ethanol (3c): Yellow oil (224 mg, 90% yield). ee=88% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=97:3, flow rate=1.0 mL/min, λ=254 nm]. tR(minor)=27.142 min, tR(major)=29.488 min. 1H NMR (300 MHz, CDCl3) δ: 8.36~8.35 (m, 1H), 8.14~8.10 (m, 1H), 7.77~7.74 (m, 1H), 7.51~7.46 (m, 1H), 7.32~7.26 (m, 2H), 6.98~6.96 (m, 1H), 2.30 (s, H), 1.99 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 149.7, 148.3, 148.2, 131.7, 129.1, 126.9, 126.2, 122.0, 121.3, 120.4, 74.0, 31.2. HRMS (ESI) calcd for C12H11O3NSNa (M+Na+) 272.0352, found 272.0351.

    1-(Thien-3-yl)-1-(4-(trifluoromethyl)phenylethanol (3d): Yellow oil (245 mg, 90% yield). ee=90%[Chiralpak AD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(major)=10.886 min, tR(minor)=14.053 min. 1H NMR (300 MHz, CDCl3) δ: 7.62~7.57 (m, 4H), 7.27~7.26 (m, 1H), 6.97~6.93 (m, 2H), 2.49 (s, 1H), 2.02 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 152.3, 151.0, 126.7, 125.7, 125.4, 125.2, 125.1, 125.0, 124.4, 74.5, 32.1. HRMS (ESI) calcd for C13H10F3S (M-OH)+ 255.0450, found 255.0449.

    1-(4-Bromophenyl)-1-(thien-3-yl)ethanol (3e): Yellow oil (232 mg, 82% yield). ee=86% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(minor)=9.101 min, tR(major)=10.056 min. 1H NMR (300 MHz, CDCl3) δ: 7.45~7.42 (m, 2H), 7.38~7.28 (m, 3H), 7.18 (s, 1H), 6.97~6.95 (m, 1H), 2.29 (s, H), 1.90 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 149.0, 146.4, 131.1, 127.2, 126.5, 126.2, 120.9, 74.1, 31.0. HRMS (ESI) calcd for C12H11BrS (M-OH)+ 264.9681, found 264.9682.

    1-(4-Chlorophenyl)-1-(thien-3-yl)ethanol (3f): Yellow oil (208 mg, 87% yield). ee=90% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=97:3, flow rate=1.0 mL/min, λ=254 nm]. tR(minor)=15.427 min, tR(major)=18.464 min. 1H NMR (300 MHz, CDCl3) δ: 7.44~7.40 (m, 2H), 7.31~7.23 (m, 3H), 6.94~6.89 (m, 2H), 2.42 (s, H), 1.99 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 152.8, 145.8, 133.0, 128.2, 126.8, 125.6, 125.2, 124.3, 74.4, 32.2. HRMS (ESI) calcd for C12H11OClSNa (M+Na+) 261.0111, found 261.0105.

    1-(2-Chlorophenyl)-1-(thien-3-yl)ethanol (3g): Yellow oil (191 mg, 80% yield). ee=90% [Chiralpak AD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(major)=8.514 min, tR(minor)=9.488 min. 1H NMR (300 MHz, CDCl3) δ: 7.81~7.78 (m, 1H), 7.33~7.23 (m, 4H), 6.91~6.90 (m, 1H), 6.76~6.74 (m, 1H), 2.33 (s, H), 2.09 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 152.4, 143.2, 131.3, 129.1, 127.6, 126.8, 126.6, 124.7, 124.1, 121.0, 74.5, 29.9. HRMS (ESI) calcd for C12H11OClSNa (M+Na+) 261.0111, found 261.0108.

    1-(Thien-3-yl)-1-(p-tolyl)ethanol (3h): Yellow oil (175 mg, 80% yield). ee=85% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(major)=14.415 min, tR(minor)=18.012 min. 1H NMR (300 MHz, CDCl3) δ: 7.32~7.25 (m, 3H), 7.19~7.12 (m, 3H), 6.96~6.93 (m, 1H), 3.02 (s, 1H), 2.34 (s, 3H), 2.02 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 153.6, 144.3, 136.8, 128.7, 126.4, 125.2, 124.7, 124.0, 74.6, 32.1, 20.9. HRMS (ESI) calcd for C13H14OSNa (M+Na+) 241.0658, found 241.0658.

    1-(Thien-3-yl)-1-(o-tolyl)ethanol (3i): Yellow oil (170 mg, 78% yield). ee=85% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(major)=7.488 min, tR(minor)=8.388 min. 1H NMR (300 MHz, CDCl3) δ: 7.73~7.69 (m, 1H), 7.25~7.21 (m, 3H), 7.15~7.12 (m, 1H), 6.91~6.88 (m, 1H), 6.76~6.74 (m, 1H), 2.30 (s, H), 2.14 (s, 3H), 2.03 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 153.2, 144.3, 136.4, 132.3, 127.8, 126.6, 125.5, 125.4, 124.6, 123.9, 74.8, 31.4, 21.3. HRMS (ESI) calcd for C13H14OSNa (M+Na+) 241.0658, found 241.0656.

    1-(4-Methoxyphenyl)-1-(thien-3-yl)ethanol (3j): Yellow oil (194 mg, 83% yield). ee=90% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(minor)=24.622 min, tR(major)=27.122 min. 1H NMR (300 MHz, CDCl3) δ: 7.36~7.32 (m, 2H), 7.26~7.24 (m, 1H), 7.18~7.16 (m, 1H), 6.98~6.97 (m, 1H), 6.87~6.83 (m, 2H), 3.79 (s, 3H), 2.20 (s, H), 1.92 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 158.5, 150.0, 139.7, 126.6, 125.9, 120.5, 113.4, 74.3, 55.2, 31.1. HRMS (ESI) calcd for C13H14O2SNa (M+Na+) 257.0607, found 257.0606.

    1-(3-Methoxyphenyl)-1-(thien-3-yl)ethanol (3k): Yellow oil (199 mg, 85% yield). ee=70% [Chiralpak OD-H column, V(n-hexane):V(i-PrOH)=93:7, flow rate=1.0 mL/min, λ=254 nm]. tR(minor)=15.076 min, tR(major)=18.947 min. 1H NMR (300 MHz, CDCl3) δ: 7.25~7.22 (m, 2H), 7.08~7.02 (m, 2H), 6.92~6.89 (m, 2H), 6.82~6.79 (m, 1H), 3.79 (s, 3H), 2.49 (s, H), 2.00 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 159.4, 153.2, 148.9, 129.1, 126.5, 124.9, 124.1, 117.8, 112.4, 111.4, 74.7, 55.2, 32.1. HRMS (ESI) calcd for C13H14O2SNa (M+Na+) 257.0607, found 257.0611.

    1-(Pyridin-3-yl)-1-(thien-3-yl)ethanol (3l): Yellow oil (162 mg, 79% yield). ee=91% [Chiralpak AS-H column, V(n-hexane):V(i-PrOH)=90:10, flow rate=0.8 mL/min, λ=254 nm]. tR(major)=15.840 min, tR(minor)=18.044 min. 1H NMR (300 MHz, CDCl3) δ: 8.63~8.62 (m, 1H), 8.45~8.43 (m, 1H), 7.78~7.74 (m, 1H), 7.30~7.20 (m, 3H), 6.99~6.97 (m, 1H), 1.96 (s, 3H); 13C NMR (75 MHz, CDCl3) δ: 148.8, 148.1, 147.2, 142.9, 133.2, 126.5, 126.4, 122.9, 121.1, 73.2, 31.1. HRMS (ESI) calcd for C11H12ONS (M+H+) 206.0634, found 206.0629.

    Supporting Information Copies of HPLC analytic data, and 1H NMR and 13C NMR spectra of the compounds 3a~3l. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.

    1. [1]

      For reviews, see:
      (a) Pu, L. ; Yu, H. -B. Chem. Rev. 2001, 101, 757.
      (b) Walsh, P. J. Acc. Chem. Res. 2003, 36, 739.
      (c) Ramón, D. J. ; Yus, M. Angew. Chem., Int. Ed. 2004, 43, 284.
      (d) Schmidt, F. ; Stemmler, R. T. ; Rudolph, J. ; Bolm, C. Chem. Soc. Rev. 2006, 35, 454.
      (e) Hatano, M. ; Ishihara, K. Chem. Rec. 2008, 8, 143.
      (f) Hatano, M. ; Ishihara, K. Synthesis 2008, 1647.
      (g) Paixão, M. W. ; Braga, A. L. ; Lüdtke, D. S. J. Braz. Chem. Soc. 2008, 19, 813.

    2. [2]

      For asymmetric addition of arylboronic, see:
      (a) Bolm, C. ; Rudolph, J. J. Am. Chem. Soc. 2002, 124, 14850.
      (b) Özçubukçu, S. ; Schmidt, F. ; Bolm, C. Org. Lett. 2005, 7, 1407.
      (c) Dahmen, S. ; Lormann, M. Org. Lett. 2005, 7, 4597.
      (d) Liu, X. ; Wu, X. ; Chai, Z. ; Wu, Y. ; Zhao, G. ; Zhu, S. J. Org. Chem. 2005, 70, 7432.
      (e) Wu, X. ; Liu, X. ; Zhao, G. Tetrahedron: Asymmetry 2005, 16, 2299.
      (f) Braga, A. L. ; Lüedtke, D. S. ; Vargas, F. ; Paixão, M. W. Chem. Commun. 2005, 2512.
      (g) Lu, G. ; Kwong, F. Y. ; Ruan, J. -W. ; Li, Y. -M. ; Chan, A. S. C. Chem. -Eur. J. 2006, 12, 4115.
      (h) Hatano, M. ; Gouzu, R. ; Mizuno, T. ; Abe, H. ; Yamada, T. ; Ishihara, K. Catal. Sci. Technol. 2011, 1, 1149.

    3. [3]

      For asymmetric addition of arylzinc, see:
      (a) Dosa, P. I. ; Ruble, J. C. ; Fu, G. C. J. Org. Chem. 1997, 62, 444.
      (b) Bolm, C. ; Muñiz, K. Chem. Commun. 1999, 1295-1296.
      (c) Huang, W. -S. ; Hu, Q. -S. ; Pu, L. J. Org. Chem. 1999, 64, 7940.
      (d) Huang, W. -S. ; Pu, L. J. Org. Chem. 1999, 64, 4222.
      (e) Bolm, C. ; Kesselgruber, M. ; Hermanns, N. ; Hildebrand, J. P. ; Raabe, G. Angew. Chem., Int. Ed. 2001, 40, 1488.
      (f) Qin, Y. -C. ; Pu, L. Angew. Chem., Int. Ed. 2006, 45, 273.
      (g) Shannon, J. ; Bernier, D. ; Daniel, D. ; Woodward, S. Chem. Commun. 2007, 3945.
      (h) Glynn, D. ; Shannon, J. ; Woodward, S. Chem. -Eur. J. 2010, 16, 1053.

    4. [4]

      For asymmetric addition of arylaluminum, see:
      (a) Wu, K. -H. ; Gau, H. -M. J. Am. Chem. Soc. 2006, 128, 14808.
      (b) Wu, K. -H. ; Chen, C. -A. ; Gau, H. -M. Angew. Chem., Int. Ed. 2007, 46, 5373.
      (c) Zhou, S. ; Wu, K. -H. ; Chen, C. -A. ; Gau, H. -M. J. Org. Chem. 2009, 74, 3500.
      (d) Zhou, S. ; Chuang, D. -W. ; Chang, S. -J. ; Gau, H. -M. Tetrahedron: Asymmetry 2009, 20, 1407.

    5. [5]

      For asymmetric addition of aryltitanium, see:
      (a) Weber, B. ; Seebach, D. Tetrahedron 1994, 50, 7473.
      (b) Wu, K. -H. ; Zhou, S. ; Chen, C. -A. ; Yang, M. -C. ; Chiang, R. -T. ; Chen, C. -R. ; Gau, H. -M. Chem. Commun. 2011, 47, 11668.
      (c) Wu, K. -H. ; Kuo, Y. -Y. ; Chen, C. -A. ; Huang, Y. -L. ; Gau, H. -M. Adv. Synth. Catal. 2013, 355, 1001.
      (d) Chang, S. -J. ; Zhou, S. ; Gau, H. -M. ; RSC Adv. 2015, 5, 9368.
      (e) Shu, C. -C. ; Zhou, S. ; Gau, H. -M. RSC Adv. 2015, 5, 98391.

    6. [6]

      (a) Duchene-Marullaz, P. ; Jovanovic, D. ; Busch, N. ; Vacher, J. Arch. Int. Pharmacodyn. Ther. 1963, 141, 465.
      (b) Baumgold, J. ; Cohen, V. I. ; Paek, R. ; Reba, R. C. Life Sci. 1991, 48, 2325.

    7. [7]

      (a) Hatano, M. ; Suzuki, S. ; Ishihara, K. J. Am. Chem. Soc. 2006, 128, 9998.
      (b) Schneider, U. ; Kobayashi, S. Angew. Chem., Int. Ed. 2007, 46, 5909.
      (c) Hatano, M. ; Miyamoto, T. ; Ishihara, K. Org. Lett. 2007, 9, 4535.
      (d) Salvi, L. ; Kim, J. G. ; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 12483.
      (e) Li, K. ; Hu, N. ; Luo, R. ; Yuan, W. ; Tang, W. J. Org. Chem. 2013, 78, 6350.

    8. [8]

      Wu, K.-H.; Chuang, D.-W.; Chen, C.-A.; Gau, H.-M. Chem. Commun. 2008, 2343.

    9. [9]

      Zhou, S. L.; Chen, C.-R.; Gau, H.-M. Org. Lett. 2010, 12, 48. doi: 10.1021/ol902454n

    10. [10]

      (a) Schmidt, F. ; Rudolph, J. ; Bolm, C. Adv. Synth. Catal. 2007, 349, 703.
      (b) Liu, X. ; Qiu, L. ; Hong, L. ; Yan, W. ; Wang, R. Tetrahedron: Asymmetry 2009, 20, 616.

    11. [11]

      Biradar, D. B.; Zhou, S.; Gau, H.-M. Org. Lett. 2009, 11, 3386. doi: 10.1021/ol901193q

    12. [12]

      Salvi, L.; Kim, J. G.; Walsh, P. J. J. Am. Chem. Soc. 2009, 131, 12483. doi: 10.1021/ja9046747

    13. [13]

      Uenishi, A.; Nakagawa, Y.; Osumi, H.; Harada, T. Chem.-Eur. J. 2013, 19, 4896. doi: 10.1002/chem.201203946

    14. [14]

      Zhang, L.; Tu, B.; Ge, M.; Li, Y.; Chen, L. Wang, W. Zhou, S. J. Org. Chem. 2015, 80, 8307. doi: 10.1021/acs.joc.5b01410

    15. [15]

      (a) Balsells, J. ; Davis, T. ; Carroll, P. ; Walsh P. J. Am. Chem. Soc. 2002, 124, 10336.
      (b) Wu, K. -H. ; Gau, H. -M. Organometallics 2004, 23, 580.
      (c) Harada, T. ; Kanda, K. Org. Lett. 2006, 8, 3817.
      (d) Li, Q. ; Gau, H. -M. Chirality 2011, 23, 929.

  • Figure 1  Different chiral ligands

    Table 1.  Optimization of enantioselective addition of 3-thienyl aluminum to acetophenonea

    Entry Ligand Ti(OiPr)4b/equiv. (3-Thienyl)Al b/equiv. Solvent Yield/% ee c/%
    1 (S)-BINOL 5.0 1.5 Toluene 21 82
    2 (S)-BINOL 5.0 2.0 Toluene 31 85
    3 (S)-BINOL 5.0 2.5 Toluene 53 84
    4 (S)-BINOL 5.0 3.0 Toluene 35 89
    5 (S)-BINOL 5.0 3.5 Toluene 40 82
    6 (S)-BINOL 2.5 3.0 Toluene 70 62
    7 (S)-BINOL 3.5 3.0 Toluene 88 90
    8 (S)-BINOL 4.0 3.0 Toluene 50 88
    9 (S)-BINOL 3.5 3.0 THF 62 84
    10 (S)-BINOL 3.5 3.0 n-Hexane 63 88
    11 (S)-BINOL 3.5 3.0 Et2O 93 81
    12 (S)-BINOL 3.5 3.0 CH2Cl2 85 31
    13 A 3.5 3.0 Toluene 50 25
    14 B 3.5 3.0 Toluene 40 -10
    15 C 3.5 3.0 Toluene 60 -51
    16 D 3.5 3.0 Toluene 45 15
    a Condition: acetophenone (1.00 mmol), solvent (5.0 mL), time: 12 h. b Equivalents of Ti(OiPr)4 and 2 are relative to acetophenone. c Enantioselectivities were determined by HPLC.
    下载: 导出CSV

    Table 2.  Enantioselective addition of 3-thienyl aluminum reagent to ketonesa

    Entry Ketone Product Yield/% ee/%
    1 3a 88 90
    2 3b 91 91
    3 3c 90 88
    4 3d 90 90
    5 3e 82 86
    6 3f 87 90
    7 3g 80 90
    8 3h 80 85
    9 3i 78 85
    10 3j 83 90
    11 3k 85 70
    12 3l 79 91
    a Condition: (S)-BINOL (0.10 mmol), Ti(OiPr)4 (3.50 mmol), 2 (3.00 mmol), ketone (1.00 mmol), toluene (5.0 mL). b Enantioselectivities were determined by HPLC.
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  929
  • HTML全文浏览量:  73
文章相关
  • 发布日期:  2018-03-25
  • 收稿日期:  2017-10-07
  • 修回日期:  2017-11-09
  • 网络出版日期:  2017-03-17
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章