Regioselective 2-alkylation of indoles with α-bromo esters catalyzed by Pd/P, P=O system

Wei Tian Bowen Li Duanshuai Tian Wenjun Tang

Citation:  Wei Tian, Bowen Li, Duanshuai Tian, Wenjun Tang. Regioselective 2-alkylation of indoles with α-bromo esters catalyzed by Pd/P, P=O system[J]. Chinese Chemical Letters, 2022, 33(1): 197-200. doi: 10.1016/j.cclet.2021.06.091 shu

Regioselective 2-alkylation of indoles with α-bromo esters catalyzed by Pd/P, P=O system

English

  • Substituted indoles exist widely in the structures of numerous biologically active natural products and pharmaceuticals [1-6]. Their synthesis have attracted significant interest among synthetic community. Complementary to the traditional Friedel Crafts reaction, the metal-catalyzed direct C-H functionalization of indole has represented one of the most efficient methods for preparing indole derivatives. While the C-H arylation [7-13], alkenylation [14-18], and 3-alkylation [19-28] of indoles have been well-documented, the 2-alkylation of indoles via direct C-H functionalization is much less studied. In the past ten years, a few metal-catalyzed 2-alkylation of indoles through C-H functionalization with various alkylation reagents including alkenes [29-35], alkyl halides [36-45] and α-diazomalonates [46-47] have been established (Scheme 1). In 2011, Bach [41] and coworkers reported the first direct 2-alkylation of indole with unactivated alkyl bromides through a palladium-catalyzed norbornene-mediated C-H activation cascade at the indole ring (Scheme 1A). By employing a palladium-catalyzed Catellani-type reaction, Liu [44] and Yang [39] realized the 2-trifluoroethylation and 2-methylenephosphorylation of indole from CF3CH2I and diethyl (iodomethyl)phosphonate as the reagents, respectively. Taking advantage of the monodentate-chelation of N-2-Py functionality on indole, Punji [40, 45] developed a nickel-catalyzed 2-alkylation of indoles. This unique alkylation strategy proceeded through a crucial C-H activation process and an alkyl radical intermediate. Stephenson [36, 37] and Melchiorre [38] also described the photochemical 2-alkylation of indoles using bromo malonates and benzyl bromides as the reagents. Despite these progresses, there remain a number of synthetic challenges including harsh reaction conditions, high catalyst loadings, and limited substrate scope. Recent advances on palladium-catalyzed SET processes have significantly expanded the scope of Pd-catalyzed processes [48-57]. By utilizing the Pd-mediated radical pathways, a number of research groups including Ngai [50], Loh [51], Glorius [52], Zhu [53], Zhou [54], and us [49] have contributed to this field. Considering that 2-alkylation of indoles can proceed via a radical pathway [58-63, 38] and α-haloesters can often act as radical precursors under metal catalysis. We envisioned that a Pd-catalyzed 2-alkylation of indoles could be achieved with α-halo esters as the reagents through a radical process. Herein we report a palladium-catalyzed regioselective 2-alkylation of N-protected indoles with α-bromo esters as the reagents, which features mild reaction conditions, good functional group compatibility, and moderate to good yields. The employment of P, P=O ligands [64-69] and 4Å molecular sieve (MS) were essential for the success of the transformation.

    Scheme 1

    Scheme 1.  Common alkylation reagents for direct 2-alkylation of indoles.

    To avoid the N-H deprotonation of indoles in the presence of base, we chose N-methylindole (1a) and benzyl 2-bromo propionate (2a) as the model substrates for cross-coupling. The initial coupling between 1a and 2a was carried out under conditions of Pd(OAc)2 and toluene at 80 ℃, however with no formation of the desired product (Table 1, entry 1). To our surprise, the desired coupling product was obtained in 10% yield when the P, P=O ligand L1 was employed (entry 2). We then examined the additive effect including AgSbF6, NaI, and 4 Å MS (entries 3-5). 4 Å MS provided the highest yield (23%). One major issue with the above conditions was the incomplete conversion, which was responsible for low yields. We thus improved the molar ratio of 1a:2a from 2:1 to 4:1. Consequently, the yield increased from 10% to 33% without additive effect (entries 2 and 6). Encouragingly, the addition of 4 Å MS further enhanced the yield to 54% (entry 7), with a good regioselectivity (3a/4a = 5:1).

    Table 1

    Table 1.  Optimization of reaction conditions.
    DownLoad: CSV

    Screen of various ligands showed that the P, P=O ligand L2 was the optimal ligand in terms of both yield and regioselectivity (entries 7-14). It is noteworthy that all reactions with chiral ligands led to racemic products. Among various palladium precursors employed (entries 15-17), Pd(CF3COO)2 proved to be the best, providing 70% yield (entry 16). The reaction temperature was also important. Use of a lower or higher reaction temperature led to a diminished yield, albeit with a similar ratio of 3a/4a (entries 18 and 19). Control experiments indicated that both the palladium precursor and the ligand were essential for the transformation (entries 20 and 21). Thus, the reaction was performed with K3PO4 as the base, Pd(CF3COO)2 as the Pd source, L2 as the ligand, 4 Å MS as the additive in toluene at 80 ℃ for 36 h as the optimized reaction conditions (see Supporting information for more optimization details).

    Under the optimized reaction conditions, the scope of the cross-coupling was studied (Scheme 2). In general, the reaction was compatible with a variety of substituted indoles and α-halo esters. However, the reaction was sensitive to N-substituents of the indoles. Substituents such as N-Boc, N-ethyl and N-butyl (3c, 3d, 3e) gave low yields, while N-Bn indoles afforded the desired product in 42% yield. Indole substrates with either electron-withdrawing or -donating substituents at the C3 position led to the desired C2-alkylation product (3f 58%, 3g 80%) in satisfactory yields. In addition, a series of C5-subsitituted indoles was also able to provide the target products in acceptable yields (3h-3k). Other heteroaromatic compounds such as N-substituted pyrroles (3l-3n), and benzofuran 3o were all suitable substrates, providing the 2-alkylation products in 42%-72% isolated yields. As for the α-bromo esters, we were surprise to find that the reaction of various α-bromoesters proceeded well under optimal reaction conditions with moderate to good yield (3p-3w).

    Scheme 2

    Scheme 2.  Substrate scope. Unless otherwise specified, all reactions were carried out under nitrogen with 1 (4 equiv.), 2 (0.25 mmol), Pd(CF3COO)2 (4 mol%), L2 (6 mol%) and K3PO4 (2 equiv.) at 80 ℃ in toluene for 36 h. 4 Å MS (75 mg). a Pd(CF3COO)2 (6 mol%), L2 (8 mol%).

    To gain some mechanistic insight, we conducted the reaction in the presence of a radical inhibitor. As shown in Scheme 3a, the addition of 2, 2, 6, 6, -tetramethylpiperidine-1-oxyl (TEMPO) completely suppressed the transformation and the TEMPO-alkyl adduct 5a was detected by MS. In the presence of a good hydrogen atom donor, 1, 4-cyclohexadiene, benzyl 2-bromopropionate (2a) was significantly reduced to benzyl propionate (6a) (Scheme 3b). These two experiments indicated that the reaction was likely to proceed through an α-carbonyl alkyl radical species. Further support for a radical pathway came from a EPR experiment with the spin-trapping reagent DMPO (5, 5-dimethyl-1-pyrroline N-oxide), a significant signal of alkyl radical was observed (Scheme 3c).

    Scheme 3

    Scheme 3.  Preliminary mechanistic studies.

    On the basis of the above experimental results, a reaction mechanism was proposed shown in Scheme 4. [Pd(0)L] reduces the α-bromoester (2a) through a single electron transfer process to give alkyl radical and [Pd(I)LBr]; subsequent radical addition of intermediate to 1a at C2-position produces a stabilized benzyl radical intermediate , which is responsible for the observed regioselectivity. Oxidation of the benzylic radical by [Pd(I)LBr] followed by deprotonation-aromatization provides the observed product. The role of the P, P=O ligand presumably helps forming the key α-carbonyl radical, therefore allowing the radical cross-coupling to proceed, while the addition of 4 Å MS possibly contributes to provide a weak coordination with the ester substrate.

    Scheme 4

    Scheme 4.  A possible catalytic cycle.

    In summary, we have developed a palladium-catalyzed regioselective 2-alkylation of N-protected indoles with α-bromo esters under mild reaction conditions. The employment of P, P=O ligand as well as 4 Å MS as the additive is crucial for the transformation. Preliminary mechanistic studies have shown that the reaction is likely to proceed through a radical pathway. Further mechanistic studies and applications of palladium-catalyzed cross-coupling is underway in our group.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We are grateful to the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000), CAS (No. QYZDY-SSW-SLH029), National Natural Science Foundation of China (Nos. 21725205, 21432007, 21572246), STCSM-18520712200, and K.C. Wong Education Foundation.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.06.091.


    1. [1]

      J. Bosch, M. Bennasar, Synlett 6(1995) 587-596.

    2. [2]

      A.R. Katritzky, C.W. Rees, in: Comprehensive Heterocyclic Chemistry, 2nd Ed, PergamonPress: Oxford, 1996, pp. 119-206.

    3. [3]

      E.J. Thomas, Science of Synthesis-Houben-Weyl Methods of Molecular Transformations, Thieme: Stuttgart 10 (2000) 361-652.

    4. [4]

      D. Faulkner, J. Nat. Prod. Rep. 19(2002) 1-48.

    5. [5]

      J. Tois, R. Franzen, A. Koskinen, Tetrahedron 59(2003) 5395-5405. doi: 10.1016/S0040-4020(03)00851-2

    6. [6]

      S. O'Connor, J. Maresh, J. Nat. Prod. Rep. 23(2006) 532-547. doi: 10.1039/b512615k

    7. [7]

      L. Joucla, L. Djakovitch, Adv. Synth. Catal. 351(2009) 673-714. doi: 10.1002/adsc.200900059

    8. [8]

      R. Jagtap, B. Punji, Asian J. Org. Chem. 9(2020) 326-342. doi: 10.1002/ajoc.201900554

    9. [9]

      A. Pacheco-Benichou, T. Besson, C. Fruit, Catalysts 10(2020) 483. doi: 10.3390/catal10050483

    10. [10]

      Y. Yang, Z. Shi, Chem. Commun. 54(2018) 1676-1685. doi: 10.1039/C7CC08752G

    11. [11]

      S. Chen, M. Zhang, R. Su, ACS Catal. 9(2019) 6372-6379. doi: 10.1021/acscatal.9b01273

    12. [12]

      Y. Yang, X. Qiu, Y. Zhao, Y. Mu, Z. Shi, J. Am. Chem. Soc. 138(2016) 495-498. doi: 10.1021/jacs.5b11569

    13. [13]

      X. Mu, X. Ge, X. Zhong, L. Han, T. Liu, Mol. Catal. 495(2020) 111147. doi: 10.1016/j.mcat.2020.111147

    14. [14]

      M. Petrini, Chem. Eur. J. 23(2017) 16115-16151. doi: 10.1002/chem.201702124

    15. [15]

      S. Pradhan, P. De, T. Shah, T. Punniyamurthy, Chem. Asian J. 15(2020) 4184-4198. doi: 10.1002/asia.202001159

    16. [16]

      R. Jagtap, B. Punji, Asian J. Org. Chem. 9(2020) 326-342. doi: 10.1002/ajoc.201900554

    17. [17]

      V. Boyarskiy, D. Ryabukhin, N. Bokach, A. Vasilyev, Chem. Rev. 116(2016) 5894-5986. doi: 10.1021/acs.chemrev.5b00514

    18. [18]

      J. Leitch, Y. Bhonoah, C. Frost, ACS Catal. 7(2017) 5618-5627. doi: 10.1021/acscatal.7b01785

    19. [19]

      F. Bartoccini, M. Retini, G. Piersanti, Tetrahedron Lett. 61(2020) 151875. doi: 10.1016/j.tetlet.2020.151875

    20. [20]

      K. Huang, Q. Ma, X. Shen, L. Gong, E. Meggers, Asian J. Org. Chem. 5(2016) 1198-1203. doi: 10.1002/ajoc.201600288

    21. [21]

      F. Pu, Y. Li, Y. Song, Adv. Synth. Catal. 358(2016) 539-542. doi: 10.1002/adsc.201500874

    22. [22]

      J. Liu, L. Gong, E. Meggers, Tetrahedron Lett. 56(2015) 4653-4656. doi: 10.1016/j.tetlet.2015.06.046

    23. [23]

      S. Mohapatra, P. Mukhi, A. Mohanty, Tetrahedron Lett. 56(2015) 5709-5713. doi: 10.1016/j.tetlet.2015.08.080

    24. [24]

      C. Zhuo, C. Zheng, S. You, Acc. Chem. Res. 47(2014) 2558-2573. doi: 10.1021/ar500167f

    25. [25]

      A. Putra, K. Takigawa, H. Tanaka, Eur. J. Org. Chem. (2013) 6344-63542013. doi: 10.1002/ejoc.201300744

    26. [26]

      Q. Xu, L. Dai, S. You, Chem. Sci. 4(2013) 97-102. doi: 10.1039/C2SC21085A

    27. [27]

      S. Imm, S. Bähn, A. Dr, Chem. Eur. J. 16(2010) 2705-2709. doi: 10.1002/chem.200903261

    28. [28]

      M. Wang, C. Zhou, M. Wong, C. Che, Chem. Eur. J. 16(2010) 5723-5735. doi: 10.1002/chem.200902387

    29. [29]

      T. Shibata, N. Ryu, H. Takano, Adv. Synth. Catal. 357(2015) 1131-1135. doi: 10.1002/adsc.201401163

    30. [30]

      Y. Nakao, N. Kashihara, K. Kanyiva, T. Hiyama, Angew. Chem. Int. Ed. 49(2010) 4451-4454. doi: 10.1002/anie.201001470

    31. [31]

      S. Pan, N. Ryu, T. Shibata, J. Am. Chem. Soc. 134(2012) 17474-17477. doi: 10.1021/ja308742x

    32. [32]

      Y. Zhang, J. Zheng, S. Cui, J. Org. Chem. 79(2014) 6490-6500. doi: 10.1021/jo500902n

    33. [33]

      B. Chaudhary, M. Diwaker, S. Sharma, Org. Chem. Front. 5(2018) 3133-3137. doi: 10.1039/C8QO00932E

    34. [34]

      C. Sevov, J. Hartwig, J. Am. Chem. Soc. 135(2013) 2116-2119. doi: 10.1021/ja312360c

    35. [35]

      Y. Schramm, M. Takeuchi, K. Semba, Y. Nakao, J. Hartwig, J. Am. Chem. Soc. 137(2015) 12215-12218. doi: 10.1021/jacs.5b08039

    36. [36]

      E. Swift, T. Williams, C. Stephenson, Synlett 27(2016) 754-758. doi: 10.1055/s-0035-1561320

    37. [37]

      L. Furst, B. Matsuura, J. Narayanam, J. Tucker, C. Stephenson, Org. Lett. 12(2010) 3104-3107. doi: 10.1021/ol101146f

    38. [38]

      S. Kandukuri, A. Bahamonde, I. Chatterjee, Angew. Chem. Int. Ed. 54(2015) 1485-1489. doi: 10.1002/anie.201409529

    39. [39]

      Y. Niu, P. Bai, Q. Lou, S. Yang, ChemCatChem 12(2020) 3644-3649. doi: 10.1002/cctc.202000415

    40. [40]

      D. Pandey, S. Ankade, A. Ali, C. Vinod, B. Punji, Chem. Sci. 10(2019) 9493-9500. doi: 10.1039/C9SC01446B

    41. [41]

      L. Jiao, T. Bach, J. Am. Chem. Soc. 133(2011) 12990-12993. doi: 10.1021/ja2055066

    42. [42]

      L. Jiao, E. Herdtweck, T. Bach, J. Am. Chem. Soc. 134(2012) 14563-14572. doi: 10.1021/ja3058138

    43. [43]

      H. Potukuchi, T. Bach, J. Org. Chem. 78(2013) 12263-12267. doi: 10.1021/jo402107m

    44. [44]

      H. Zhang, H. Wang, Y. Luo, et al., ACS Catal. 8(2018) 2173-2180. doi: 10.1021/acscatal.7b03220

    45. [45]

      V. Soni, R. Jagtap, R. Gonnade, B. Punji, ACS Catal. 6(2016) 5666-5672. doi: 10.1021/acscatal.6b02003

    46. [46]

      X. Liu, S. Zhang, J. Wu, Q. Li, H. Wang, Tetrahedron Lett. 56(2015) 4093-4095. doi: 10.1016/j.tetlet.2015.05.025

    47. [47]

      K. Wan, Z. Li, X. Qu, F. Wang, L. Wang, Catalysts 6(2016) 89. doi: 10.3390/catal6060089

    48. [48]

      Q. Liu, X. Dong, J. Li, ACS Catal. 5(2015) 6111-6137. doi: 10.1021/acscatal.5b01469

    49. [49]

      M. Aliyu, B. Li, H. Yang, W. Tang, Org. Chem. Front. 7(2020) 3505-3508. doi: 10.1039/D0QO01013H

    50. [50]

      G. Zhao, W. Yao, J. Mauro, M. Ngai, J. Am. Chem. Soc. 143(2021) 1728-1734. doi: 10.1021/jacs.0c11209

    51. [51]

      X. Wu, G. Xiao, Y. Ding, et al., ACS Catal 10(2020) 14107-14116. doi: 10.1021/acscatal.0c04013

    52. [52]

      H. Huang, P. Bellotti, P. Pflüger, J. Am. Chem. Soc. 142(2020) 10173-10183. doi: 10.1021/jacs.0c03239

    53. [53]

      S. Wang, J. Zhang, L. Kong, Org. Lett. 20(2018) 5631-5635. doi: 10.1021/acs.orglett.8b02336

    54. [54]

      S. Teng, M. Tessensohn, R. Webster, J. Zhou, ACS Catal. 8(2018) 7439-7444. doi: 10.1021/acscatal.8b02029

    55. [55]

      C. Wang, G. Dong, J. Am. Chem. Soc. 140(2018) 6057-6061. doi: 10.1021/jacs.8b03530

    56. [56]

      J. Liao, L. Fan, W. Guo, Org. Lett. 19(2017) 1008-1011. doi: 10.1021/acs.orglett.6b03865

    57. [57]

      Z. Wu, T. Si, G. Xu, B. Xu, W. Tang, Chin. Chem. Lett. 30(2018) 597-600. doi: 10.1002/chem.201705533

    58. [58]

      F. Klauck, M. James, F. Glorius, Angew. Chem. Int. Ed. 56(2017) 12336-12339. doi: 10.1002/anie.201706896

    59. [59]

      M. Guerrero, L. Miranda, Tetrahedron Lett 47(2006) 2517-2520. doi: 10.1016/j.tetlet.2006.02.052

    60. [60]

      L. Furst, B. Matsuura, J. Narayanam, J. Tucker, C. Stephenson, Org. Lett. 12(2010) 3104-3107. doi: 10.1021/ol101146f

    61. [61]

      C. Theunissen, J. Wang, G. Evano, Chem. Sci. 8(2017) 3465-3470. doi: 10.1039/C6SC05622A

    62. [62]

      X. Wu, J. See, K. Xu, Angew. Chem. Int. Ed. 53(2014) 13573-13577. doi: 10.1002/anie.201408355

    63. [63]

      A. Nakatani, K. Hirano, T. Satoh, M. Miura, Chem. Eur. J. 19(2013) 7691-7695. doi: 10.1002/chem.201301350

    64. [64]

      B. Li, M. Aliyu, Z. Gao, Org. Lett. 13(2020) 4974-4978.

    65. [65]

      B. Li, T. Li, M. Aliyu, Z. Li, W. Tang, Angew. Chem. Int. Ed. 58(2019) 11355-11359. doi: 10.1002/anie.201905174

    66. [66]

      C. Li, T. Chen, B. Li, G. Xiao, W. Tang, Angew. Chem. Int. Ed. 54(2015) 3792-3796. doi: 10.1002/anie.201411518

    67. [67]

      G. Xu, C. Senanayake, W. Tang, Acc. Chem. Res. 52(2019) 1101-1112. doi: 10.1021/acs.accounts.9b00029

    68. [68]

      K. Li, M. Nie, W. Tang, Green Synth. Catal. 1(2020) 171-174. doi: 10.1016/j.gresc.2020.08.003

    69. [69]

      C. Li, D. Chen, W. Tang, Synlett 27(2016) 2183-2200. doi: 10.1055/s-0035-1562360

  • Scheme 1  Common alkylation reagents for direct 2-alkylation of indoles.

    Scheme 2  Substrate scope. Unless otherwise specified, all reactions were carried out under nitrogen with 1 (4 equiv.), 2 (0.25 mmol), Pd(CF3COO)2 (4 mol%), L2 (6 mol%) and K3PO4 (2 equiv.) at 80 ℃ in toluene for 36 h. 4 Å MS (75 mg). a Pd(CF3COO)2 (6 mol%), L2 (8 mol%).

    Scheme 3  Preliminary mechanistic studies.

    Scheme 4  A possible catalytic cycle.

    Table 1.  Optimization of reaction conditions.

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  5
  • 文章访问数:  675
  • HTML全文浏览量:  46
文章相关
  • 发布日期:  2022-01-15
  • 收稿日期:  2021-05-20
  • 接受日期:  2021-06-30
  • 修回日期:  2021-06-29
  • 网络出版日期:  2021-07-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章