

可见光促进合成三氟甲基取代的四氢呋喃和四氢吡喃
English
Visible-Light Promoted Preparation of Trifluoromethylated Tetrahydrofuran and Tetrahydropyran
-
1. Introduction
Tetrahydrofuran and tetrahydropyran are essential motifs of many natural products and bioactive molecules.[1] Thus, their synthesis has attracted many research efforts over the last several decades.[2] On the other hand, the trifluoromethyl group has recently emerged as a greatly useful tool in pharmaceutical[3] and agrochemical[4] sciences due to its unique beneficial effects for enhancing chemical and metabolic stability, bioavailability, and interaction with biologically relevant targets.[5] Therefore, it is highly desirable to develop efficient methods for introducing trifluoromethyl groups[6] into tetrahydrofurans and tetrahydropyrans for potential drug and agrochemical discovery.[7] In this respect, intramolecular 1, 2-alkoxyl-trifluoromethylation of unactivated alkene[8] represents a particularly convenient way for accessing various sorts of trifluoromethylated tetrahydrofurans and tetrahydropyrans using different sources of trifluoromethyl radicals, such as Togni's reagents, [9] Umemoto reagents, [10] and trifluoromethyl halides (Scheme 1).[11] However, both of the former two types of reagents are relatively expensive and high molecular weights, while the last one is volatile, all of which render these sources uneconomical and impractical for large scale preparations. In contrast, the readily commercially available trifluoromethanesulfonyl chloride (TfCl, CF3SO2Cl) is relatively inexpensive, of much lower molecular weight, and is a liquid at ambient temperature, all of which make it an ideal trifluoromethyl radical precursor.[12] As our continuing interest in fluorine chemistry, [13] we herein report an efficient and practical protocol for preparation of a variety of trifluoromethylated tetrahydrofurans and tetrahydropyrans using TfCl-participated 1, 2-alkoxyl-trifluoromethylation of unactivated alkene under mild visible-light promoted conditions (Scheme 1).[14]
Scheme 1
Scheme 1. Preparation of tetrahydrofuran and tetrahydropyran via 1, 2-alkoxyl-trifluoromethylation of alkene2. Results and discussion
Our investigation began with 1a as a model substrate under our previously employed conditions[15] for generation of trifluoromethyl radical: photosensitizer [Ir(dtbbpy)-(ppy)2]PF6 (1 mol%), trifluoromethyl radical source CF3S- O2Cl (1.5 equiv.), basic additive Na2HPO4• 12H2O (2 equiv.), and solvent EtOAc under blue LED (light-emitting diode) irradiation. To our delight, the desired trifluoromethylated tetrahydrofuran 2a was successfully obtained, albeit in low yield (Table 1, Entry 1, 36%). Next, several common solvents (Table 1, Entries 2~11) were screened and chlorinated solvents generally performed better than others. In addition, dichloromethane (DCM) was slightly superior to 1, 2-dichloroethane (Table 1, Entries 2 and 3, 70% and 68%, respectively). In order to further improve the reaction efficiency, then the effect of different inorganic bases as additives was examined (Table 1, Entries 12~15). Unfortunately, all these bases were inferior to the original Na2HPO4. Another common photosensitizer Ru(bpy3)Cl2• 6H2O[14c] was also examined but only low yield of desired product 2a (Table 1, Entry 16) was observed. This result was not unexpected given its relatively low reduction capability (Ered=-0.81 V and -0.96 V vs SCE for excited states of Ru(bpy3)2+ and [Ir(dtbbpy)(ppy)2]+, respectively).[14e] In addition, several organic photoredox catalysts, [14j] such as 9, 10-dicyanoanthracene, Ph-Acr-Me+ClO4-, and Mes-Me2Acr-Me+ClO4-, were explored (Table 1, Entries 17~19). Unfortunately, none of them provided comparable efficiency with the Ir-based photocatalyst, possibly due to different reaction mechanisms. Therefore, the optimal reaction conditions were identified as follows: [Ir(dtbbpy)-(ppy)2]PF6 (1 mol%), CF3SO2Cl (1.5 equiv.), and Na2H- PO4•12H2O (2 equiv.) in dichloromethane (DCM) (2 mL) under blue LED irradiation, in which the desired product was obtained in 55% isolated yield on a 0.2 mmol scale (Table 2).
Table 1
Entry Catalyst Additive Solvent Yield/% 1 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O EtOAc 36 2 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DCM 70 3 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DCE 68 4 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O CH3CN 44 5 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O PhF 36 6 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DMF 21 7 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DMSO Messy 8 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O THF 39 9 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O 1, 4-Dioxane 26 10 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O Cyclohexane Messy 11 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O MeOH 39 12 [Ir(dtbbpy)(ppy)2]PF6 NaHCO3 DCM 55 13 [Ir(dtbbpy)(ppy)2]PF6 Na2CO3 DCM 56 14 [Ir(dtbbpy)(ppy)2]PF6 KHCO3 DCM 49 15 [Ir(dtbbpy)(ppy)2]PF6 K2CO3 DCM 31 16 Ru(bpy)3Cl2•6H2O Na2HPO4•12H2O DCM 45 17 9, 10-Dicyanoanthracene Na2HPO4•12H2O DCM 20 18 Ph-Acr-Me+ClO4- Na2HPO4•12H2O DCM 13 19 Mes-Me2Acr-Me+ ClO4- Na2HPO4•12H2O DCM 28 a Conditions: 1a (0.1 mmol), catalyst (1 mol%), CF3SO2Cl (1.5 equiv.), and additive (2 equiv.) in solvent (1 mL) under blue LED irradiation for 3 h. Yields were based on 19F NMR spectroscopy using α, α, α-trifluorotoluene as an internal standard. Table 2
a Conditions: 1 (0.2 mmol), [Ir(dtbbpy)(ppy)2]PF6 (1 mol%), CF3SO2Cl (1.5 equiv.), and Na2HPO4•12H2O (2 equiv.) in DCM (2 mL) under blue LED irradiation for 3 h, unless otherwise noted. Yields were isolated ones, unless otherwise noted. b Reaction time: 1 h. c Reaction Time: 1.5 h. d Yield was based on 19F NMR spectroscopy using α, α, α-trifluorotoluene as an internal standard. e Diastereomeric ratio was determined based on quantitative 13C NMR spectra of inseparable mixtures of both diastereomers. With the optimized conditions in hand, the substrate scope of the current alkoxyl-trifluoromethylation reaction was subsequently explored (Table 2). Substrates bearing electron-donating or electron-withdrawing groups on the meta- or para-positions of the alkenyl phenyl rings were tolerated to afford desired trifluoromethylated tetrahydrofurans 2b~2f in 45%~70% isolated yields. The sterically bulky substrates 1g and 1h possessing a 2-methyl substituted phenyl ring and a 1-naphtharene ring also worked well, leading to products 2g and 2h, respectively. A labile benzothiophene ring in substrate 1i survived the reaction conditions to provide product 2i in 40% yield. Noteworthy is that gem-dialkyl-substituted alkene 1j and mono-alkyl- substituted alkenes 1k and 1l were also applicable in the reaction, giving rise to corresponding products in moderate to high yields. In addition, alkenols 1m and 1n bearing only one aryl substituent on the tether also underwent the reaction smoothly, albeit in apparently no diastereoselectivity. Most importantly, substrates 1o~1q with one-carbon- longer tethers were workable under the same conditions to deliver trifluoromethylated tetrahydropyrans 2o~2q in good to excellent yields and low diastereoselectivity. Furthermore, substrate 1r featuring a phenyl-fused tether was also compatible with the reaction conditions to give tetrahydrobenzopyran 2r in moderate yield. The successful formation of trifluoromethylated tetrahydropyran under our conditions is in agreement with literature reports, which indicates that visible-light photoredox catalyzed conditions are more robust and versatile than other conditions in terms of the scope for cyclic ether products.[9~11, 16]
On the basis of literature reports, we propose a possible reaction pathway for the alkoxyl-trifluoromethylation reaction (Scheme 2). First, the photosensitizer Ir(Ⅲ) complex is converted to its excited state Ir(Ⅲ)* under blue LED irradiation, which subsequently reduces TfCl to provide trifluoromethyl radical and Ir(Ⅳ).[17] Next, the trifluoromethyl radical adds to alkene 1 to provide alkyl radical Ⅰ. This radical Ⅰ is subsequently oxidized by Ir(Ⅳ) to form carbocation Ⅱ, thus regenerating the initial Ir(Ⅲ) complex. Finally, the desired product 2 is forged upon intramolecularly trapping the carbocation with the alkoxyl group followed by facile deprotonation.
Scheme 2
3. Summary
In sum, we have prepared a range of trifluoromethylated tetrahydrofurans and tetrahydropyrans using relative inexpensive and atom-economical trifluoromethanesulfonyl chloride as the trifluoromethyl radical source for radical 1, 2-alkoxyl-trifluoromethyaltion of unactivated alkene under mild visible-light irradiation conditions. This practical protocol may find wide applications in discovering novel drugs and agrochemicals.
4. Experimental section
4.1 General information
All reactions were carried out under argon using Schlenk techniques. Unless otherwise noted, reagents were purchased at the commercial quality and used without further purification. Analytical thin layer chromatography (TLC) was performed on precoated silica gel 60 GF254 plates. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 0.040~0.063 mm). Visualization on TLC was achieved by use of UV light (254 nm), KMnO4, or iodine stain. NMR spectra were recorded on a Bruker DPX 400/500 spectrometers at 400/500 MHz for 1H NMR, 100/125 MHz for 13C NMR, and 376 MHz for 19F NMR in CDCl3 with tetramethylsilane (TMS) as internal standard. 19F NMR spectra were recorded on a Bruker DPX 400 MHz spectrometer (CFCl3 as an external reference). Mass spectrometric data were obtained using a "Bruker Apex IV RTMS".
4.2 General procedure for visible light promoted alkoxyl-trifluoromethylation of alkene
To a 5-mL single-necked tube equipped with a magnetic stir bar were added compound 1 (0.2 mmol), [Ir(dtbbpy)-(ppy)2]PF6 (1.8 mg, 0.002 mmol) and Na2HPO4•12H2O (143 mg, 0.4 mmol). Then the reaction tube was evacuated with oil pump and back-filled with argon three times. After addition of anhydrous DCM (2 mL) and CF3SO2Cl (32 µL, 0.3 mmol) under argon atmosphere, the reaction tube was sealed. And the mixture was stirred under the irradiation with blue LED for appropriate time (1~3 h). Upon completion, the solvent was removed directly under reduced pressure to afford the crude product, which was purified by flash column chromatography to afford the desired product.
3-Phenyl-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro[4.4]nonane (2a):[9d] Colourless oil, 55% yield. 1H NMR (400 MHz, CDCl3) δ: 7.47~7.41 (m, 2H), 7.39~7.33 (m, 2H), 7.31~7.25 (m, 1H), 3.83 (d, J=8.3 Hz, 1H), 3.69 (d, J=8.3 Hz, 1H), 2.69 (q, J=10.7 Hz, 2H), 2.43 (d, J=12.8 Hz, 1H), 2.32 (d, J=12.7 Hz, 1H), 1.84~1.73 (m, 1H), 1.71~1.43 (m, 5H), 1.43~1.19 (m, 2H).
3-(3-Methoxyphenyl)-3-(2, 2, 2-trifluoroethyl)-2-oxa-spiro[4.4]nonane (2b):[9d] Colourless oil, 45% yield. 1H NMR (400 MHz, CDCl3) δ: 7.27 (t, J=8.0 Hz, 1H), 7.05 (dd, J=2.6, 1.7 Hz, 1H), 6.98 (ddd, J=7.7, 1.8, 1.0 Hz, 1H), 6.81 (ddd, J=8.2, 2.6, 0.9 Hz, 1H), 3.87~3.80 (m, 4H), 3.70 (d, J=8.3 Hz, 1H), 2.68 (q, J=10.7 Hz, 2H), 2.42 (d, J=12.7 Hz, 1H), 2.31 (d, J=12.8 Hz, 1H), 1.85~1.72 (m, 1H), 1.72~1.44 (m, 5H), 1.43~1.33 (m, 1H), 1.32~1.21 (m, 1H).
3-(m-Tolyl)-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro[4.4]-nonane (2c):[9d] Colourless oil, 60% yield. 1H NMR (400 MHz, CDCl3) δ: 7.25~7.15 (m, 3H), 7.08~7.03 (m, 1H), 3.79 (d, J=8.3 Hz, 1H), 3.66 (d, J=8.3 Hz, 1H), 2.65 (q, J=10.7 Hz, 2H), 2.38 (d, J=12.8 Hz, 1H), 2.36 (s, 3H), 2.29 (d, J=12.7 Hz, 1H), 1.84~1.69 (m, 1H), 1.70~1.42 (m, 5H), 1.39~1.29 (m, 1H), 1.29~1.18 (m, 1H).
3-([1, 1'-Biphenyl]-3-yl)-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro[4.4]nonane (2d):[9d] Colourless oil, 55% yield. 1H NMR (400 MHz, CDCl3) δ: 7.67~7.65 (m, 1H), 7.60 (d, J=7.4 Hz, 2H), 7.51~7.30 (m, 6H), 3.82 (d, J=8.3 Hz, 1H), 3.69 (d, J=8.4 Hz, 1H), 2.71 (q, J=10.7 Hz, 2H), 2.45 (d, J=12.7 Hz, 1H), 2.34 (d, J=12.8 Hz, 1H), 1.84~1.70 (m, 1H), 1.70~1.40 (m, 5H), 1.41~1.29 (m, 1H), 1.33~1.19 (m, 1H).
3-(2, 2, 2-Trifluoroethyl)-3-(3-(trifluoromethyl)phenyl)-2-oxaspiro[4.4]nonane (2e):[9d] Colourless oil, 53% yield. 1H NMR (400 MHz, CDCl3) δ: 7.72 (s, 1H), 7.62 (d, J=7.8 Hz, 1H), 7.54 (d, J=7.8 Hz, 1H), 7.48 (t, J=7.7 Hz, 1H), 3.84 (d, J=8.4 Hz, 1H), 3.69 (d, J=8.4 Hz, 1H), 2.79~2.62 (m, 2H), 2.43~2.33 (m, 2H), 1.86~1.73 (m, 1H), 1.73~1.43 (m, 5H), 1.40~1.16 (m, 2H).
3-(p-Tolyl)-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro[4.4]-nonane (2f):[9d] Colourless oil, 70% yield. 1H NMR (400 MHz, CDCl3) δ: 7.29 (d, J=7.9 Hz, 2H), 7.13 (d, J=7.8 Hz, 2H), 3.78 (d, J=8.3 Hz, 1H), 3.64 (d, J=8.3 Hz, 1H), 2.65 (q, J=10.8 Hz, 2H), 2.38 (d, J=12.7 Hz, 1H), 2.33 (s, 3H), 2.27 (d, J=12.8 Hz, 1H), 1.84~1.68 (m, 1H), 1.70~1.39 (m, 5H), 1.40~1.26 (m, 1H), 1.29~1.17 (m, 1H).
3-(o-Tolyl)-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro[4.4]-nonane (2g):[9d] Colourless oil, 68% yield. 1H NMR (400 MHz, CDCl3) δ: 7.74~7.63 (m, 1H), 7.23~7.07 (m, 3H), 3.79 (d, J=8.4 Hz, 1H), 3.60 (d, J=8.4 Hz, 1H), 2.93~2.63 (m, 2H), 2.40~2.31 (m, 5H), 1.90~1.78 (m, 1H), 1.75~1.44 (m, 5H), 1.47~1.22 (m, 2H).
3-(Naphthalen-1-yl)-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro-[4.4]nonane (2h): Colourless oil, 43% yield. 1H NMR (400 MHz, CDCl3) δ: 7.96~7.81 (m, 3H), 7.78 (d, J=8.2 Hz, 1H), 7.54~7.43 (m, 3H), 3.88 (d, J=8.4 Hz, 1H), 3.70 (d, J=8.3 Hz, 1H), 3.16~2.89 (m, 2H), 2.71~2.58 (m, 2H), 1.96~1.83 (m, 1H), 1.77~1.53 (m, 5H), 1.57~1.43 (m, 1H), 1.45~1.33 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 140.75, 134.87, 129.82, 129.64, 128.53, 125.82, 125.64 (q, J=278.9 Hz), 125.41, 125.06, 124.75, 123.56, 83.30~83.05 (m), 77.79, 53.30~52.90 (m), 51.59, 45.06 (q, J=26.0 Hz), 38.33, 36.76, 24.95, 24.77; 19F NMR (376 MHz, CDCl3) δ: -60.54; HRMS (ESI) calcd for C20H22F3O [M+H]+ 335.1617, found 335.1613.
3-(Benzo[b]thiophen-3-yl)-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro[4.4]nonane (2i): Colourless oil, 40% yield. 1H NMR (400 MHz, CDCl3) δ: 7.93~7.87 (m, 1H), 7.85~7.78 (m, 1H), 7.50 (s, 1H), 7.46~7.33 (m, 2H), 3.86 (d, J=8.4 Hz, 1H), 3.74 (d, J=8.3 Hz, 1H), 3.00~2.85 (m, 2H), 2.61 (d, J=12.8 Hz, 1H), 2.42 (d, J=12.7 Hz, 1H), 1.93~1.79 (m, 1H), 1.78~1.43 (m, 5H), 1.43~1.25 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 141.79, 139.56, 136.51, 124.13, 124.11, 123.41, 122.93, 122.90, 82.35 (q, J=2.0 Hz), 78.54, 51.38, 50.78, 44.17 (q, J=26.1 Hz), 38.28, 37.31, 24.84, 24.76; 19F NMR (376 MHz, CDCl3) δ: -61.01; HRMS (ESI) calcd for C18H20F3OS [M+H]+ 341.1181, found 341.1190.
3-Methyl-3-(2, 2, 2-trifluoroethyl)-2-oxaspiro[4.5]decane (2j): Colourless oil, 50% yield. 1H NMR (500 MHz, CDCl3) δ: 3.79 (dd, J=11.9, 3.9 Hz, 1H), 3.68 (dd, J=11.9, 5.1 Hz, 1H), 2.87~2.72 (m, 2H), 2.06~1.96 (m, 2H), 1.85~1.81 (m, 3H), 1.58~1.32 (m, 10H); 13C NMR (125 MHz, CDCl3) δ: 125.22 (q, J=279.0 Hz), 68.76~68.65 (m), 66.02 (br s), 49.91 (br s), 49.44 (q, J=27.2 Hz), 39.69, 35.06, 34.46, 31.48, 26.20, 21.66, 21.60; 19F NMR (376 MHz, CDCl3) δ: -59.79; HRMS (ESI) calcd for C12H20F3O [M+H]+ 237.1461, found 237.1459.
4, 4-Diphenyl-2-(2, 2, 2-trifluoroethyl)tetrahydrofuran (2k): Colourless oil, 82% yield. 1H NMR (400 MHz, CDCl3) δ: 7.49~7.41 (m, 4H), 7.40~7.33 (m, 4H), 7.32~7.25 (m, 2H), 4.26~4.07 (m, 1H), 2.74~2.36 (m, 4H), 2.04~1.85 (m, 1H), 1.83~1.68 (m, 1H); 13C NMR (100 MHz, CDCl3) δ: 146.76, 146.29, 128.49, 128.47, 127.33, 127.26, 126.09, 126.02, 125.31 (d, J=277.5 Hz), 77.89, 54.78 (q, J=2.9 Hz), 42.68 (q, J=28.6 Hz), 38.33, 32.87; 19F NMR (376 MHz, CDCl3) δ: -63.88; HRMS (ESI) calcd for C18H18F3O [M+H]+ 307.1304, found 307.1294.
4, 4-Diethyl-2-(2, 2, 2-trifluoroethyl)tetrahydrofuran (2l): Colourless oil, 90% yield (based on 19F NMR). 1H NMR (400 MHz, CDCl3) δ: 4.21~4.07 (m, 1H), 2.74~2.50 (m, 2H), 2.01~1.88 (m, 1H), 1.85~1.68 (m, 2H), 1.59~1.43 (m, 5H), 0.98~0.83 (m, 6H); 13C NMR (100 MHz, CDCl3) δ: 125.39 (q, J=277.6 Hz), 74.35, 54.96 (q, J=3.2 Hz), 42.59 (q, J=28.4 Hz), 34.50, 32.30, 31.31, 30.86, 7.92, 7.76; 19F NMR (376 MHz, CDCl3) δ: -63.87; HRMS (ESI) calcd for C12H22F3O [M+H]+ 211.1304, found 211.1326.
2-Phenyl-5-(2, 2, 2-trifluoroethyl)tetrahydrofuran (2m): Colourless oil, 87% yield, dr 1.0:1.0 (based on quantitative 13C NMR). 1H NMR (400 MHz, CDCl3) δ: 7.40~7.26 (m, 5H+5H), 4.80~4.64 (m, 1H+1H), 4.22~4.07 (m, 1H+1H), 2.69~2.43 (m, 2H+2H), 2.11~1.95 (m, 2H+2H), 1.95~1.81 (m, 2H+1H), 1.79~1.67 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 144.24, 144.17, 128.79, 128.76, 128.66~122.01 (m, 1C+1C), 128.04, 127.98, 125.88, 125.82, 74.18, 73.59, 54.37 (q, J=3.3 Hz), 53.97 (q, J=3.2 Hz), 42.93~42.19 (m, 1C+1C), 35.46, 35.15, 34.71, 34.26; 19F NMR (376 MHz, CDCl3) δ: -63.83; HRMS (ESI) calcd for C12H14F3O [M+H]+ 231.0991, found 231.0993.
2-(4-Methoxyphenyl)-5-(2, 2, 2-trifluoroethyl)tetrahydro- furan (2n): Colourless oil, 71% yield, dr 1.0:1.0 (based on quantitative 13C NMR). 1H NMR (400 MHz, CDCl3) δ: 7.30~7.21 (m, 2H+2H), 6.93~6.84 (m, 2H+2H), 4.70~4.59 (m, 1H+1H), 4.23~4.06 (m, 1H+1H), 3.80 (s, 3H+3H), 2.69~2.41 (m, 2H+2H), 2.14~1.77 (m, 3H+3H), 1.76~1.62 (m, 1H+1H); 13C NMR (125 MHz, CDCl3) δ: 159.37, 159.33, 136.37, 136.29, 128.67~122.01 (m, 1C+1C), 127.17, 127.10, 114.11, 114.09, 73.77, 73.23, 54.37 (q, J=3.3 Hz), 53.99 (q, J=3.2 Hz), 42.93~42.18 (m, 1C+1C), 35.36, 35.08, 34.79, 34.38; 19F NMR (376 MHz, CDCl3) δ: -63.83; HRMS (ESI) calcd for C13H16F3O2 [M+H]+ 261.1097, found 261.1088.
2-Phenyl-6-(2, 2, 2-trifluoroethyl)tetrahydro-2H-pyran(2o): Colourless oil, 90% yield, dr 1.0:1.1 (based on quantitative 13C NMR). 1H NMR (400 MHz, CDCl3) δ: 7.47~7.27 (m, 5H+5H), 4.76~4.65 (m, 1H+1H), 4.19~4.05 (m, 1H+1H), 2.74~2.44 (m, 2H+2H), 1.98~1.53 (m, 5H+6H), 1.54~1.38 (m, 1H); 13C NMR (125 MHz, CDCl3) δ: 144.58 (1.1C), 144.56 (1C), 128.67 (2.2C+2C), 127.85 (1.1C), 127.83 (1C), 125.94 (2.2C), 125.90 (2C), 125.36 (d, J=277.5 Hz, 1.1C+1C), 74.47 (1.1C), 74.38 (1C), 54.14~54.06 (m, 1.1C+1C), 42.83~42.13 (m, 1.1C+1C), 38.20 (1C), 38.18 (1.1C), 37.99 (1C), 37.95 (1.1C), 22.52 (1C), 22.49 (1.1C); 19F NMR (376 MHz, CDCl3) δ: -63.78; HRMS (ESI) calcd for C13H16F3O [M+H]+ 245.1148, found 245.1139.
2-(4-Methoxyphenyl)-6-(2, 2, 2-trifluoroethyl)tetrahydro-2H-pyran (2p): Colourless oil, 75% yield, dr 1.0:1.0 (based on quantitative 13C NMR). 1H NMR (400 MHz, CDCl3) δ: 7.28 (d, J=8.5 Hz, 2H+2H), 6.91 (d, J=8.7 Hz, 2H+2H), 4.68~4.57 (m, 1H+1H), 4.17~4.04 (m, 1H+1H), 3.83 (s, 3H+3H), 2.72~2.43 (m, 2H+2H), 1.94~1.51 (m, 5H+6H), 1.51~1.36 (m, 1H); 13C NMR (125 MHz, CDCl3) δ: 159.24 (1.1C), 159.23 (1C), 136.73 (1C), 136.70 (1.1C), 127.21 (2.2C), 127.17 (2C), 125.37 (d, J=277.4 Hz, 1.1C+1C), 114.02 (2.2C+2C), 74.07 (1C), 74.00 (1.1C), 55.39 (1.1C+1C), 54.16~54.07 (m, 1.1C+1C), 42.84~42.13 (m, 1.1C+1C), 38.11 (1C), 38.09 (1.1C), 38.00 (1.1C), 37.97 (1C), 22.58 (1C), 22.55 (1.1C); 19F NMR (376 MHz, CDCl3) δ: -63.81; HRMS (ESI) calcd for C14H18F3O2 [M+H]+ 275.1253, found 245.1244.
2-(Naphthalen-2-yl)-6-(2, 2, 2-trifluoroethyl)tetrahydro-2H-pyran (2q): Colourless oil, 76% yield, dr 1.0:1.0 (based on quantitative 13C NMR). 1H NMR (400 MHz, CDCl3) δ: 7.90~7.83 (m, 3H+3H), 7.80 (s, 2H), 7.57~7.50 (m, 2H+3H), 7.48 (t, J=2.0 Hz, 1H), 4.91~4.82 (m, 1H+1H), 4.18~4.05 (m, 1H+1H), 2.72~2.43 (m, 2H+2H); 2.01~1.58 (m, 5H+6H), 1.56~1.42 (m, 1H); 13C NMR (126 MHz, CDCl3) δ: 141.90, 141.87, 133.35 (1C+1C), 133.14, 133.13, 128.56, 128.54, 128.03 (1C+1C), 127.82 (1C+1C), 126.38 (1C+1C), 126.06 (1C+1C), 125.36 (q, J=277.5 Hz, 1C+1C), 124.74, 124.68, 123.99 (1C+1C), 74.59, 74.49, 54.14~54.05 (m, 1C+1C), 42.82~42.12 (m, 1C+1C), 38.06 (1C+1C), 37.99, 37.96, 22.54, 22.49; 19F NMR (376 MHz, CDCl3) δ: -63.76; HRMS (ESI) calcd for C17H18F3O [M+H]+ 295.1304, found 295.1300.
3-(2, 2, 2-Trifluoroethyl)isochromane (2r): Colourless oil, 58% yield. 1H NMR (400 MHz, CDCl3) δ: 7.44~7.39 (m, 1H), 7.38~7.30 (m, 2H), 7.30~7.26 (m, 1H), 4.81~4.69 (m, 2H), 4.53~4.42 (m, 1H), 3.29 (dd, J=14.5, 6.0 Hz, 1H), 3.21 (dd, J=14.5, 8.6 Hz, 1H), 2.77~2.61 (m, 2H); 13C NMR (125 MHz, CDCl3) δ: 138.94, 135.54, 130.81, 129.50, 128.52, 127.85, 125.44 (q, J=277.6 Hz), 63.61, 54.51 (q, J=3.1 Hz), 42.05 (q, J=28.6 Hz), 41.10; 19F NMR (376 MHz, CDCl3) δ: -63.51; HRMS (ESI) calcd for C11H12F3O [M+H]+ 217.0835, found 217.0834.
Supporting Information 1H NMR and 13C NMR spectra of the products. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn.
-
-
[1]
(a) Guéret, S. M.; Brimble, M. A. Nat. Prod. Rep. 2010, 27, 1350.
(b) Lorente, A.; Lamariano-Merketegi, J.; Albericio, F.; Álvarez, M. Chem. Rev. 2013, 113, 4567.
(c) Xu, Y.; Wang, W.; Yang, J.; Li, X.; Meng, Q. Chin. J. Org. Chem. 2016, 36, 724(in Chinese).
(徐阳荣, 王文智, 杨静静, 李新利, 孟庆国, 有机化学, 2016, 36, 724.) -
[2]
(a) Boivin, T. L. B. Tetrahedron 1987, 43, 3309.
(b) Nasir, N. M.; Ermanis, K.; Clarke, P. A. Org. Biomol. Chem. 2014, 12, 3323.
(c) Tikad, A.; Delbrouck, J. A.; Vincent, S. P. Chem.-Eur. J. 2016, 22, 9456. -
[3]
(a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(b) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceñ a, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.
(d) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822. -
[4]
(a) Jeschke, P. ChemBioChem 2004, 5, 570.
(b) Jeschke, P. Pest Manage. Sci. 2010, 66, 10.
(c) Fujiwara, T.; O'Hagan, D. J. Fluorine Chem. 2014, 167, 16. -
[5]
Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Blackwell Publishing Ltd, West Sussex, 2009.
-
[6]
(a) McClinton, M. A.; McClinton, D. A. Tetrahedron 1992, 48, 6555.
(b) Dolbier, W. R. Chem. Rev. 1996, 96, 1557.
(c) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470.
(d) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011, 111, 455.
(e) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475.
(f) Prakash, G. K. S.; Wang, F. In Organic Chemistry-Breakthroughs and Perspectives, Eds.: Ding, K.; Dai, L.-X., Wiley-VCH, Weinheim, 2012.
(g) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
(h) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513.
(i) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847.
(j) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(k) Huang, L.; Zheng, S.-C.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2015, 21, 6718.
(l) Xu, X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.
(m) Yang, X.; Wu, T.; Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826.
(n) Groult, H.; Leroux, F. R.; Tressaud, A. Modern Synthesis Processes and Reactivity of Fluorinated Compounds, Elsevier Inc., 2017.
(o) Hui, R.; Zhang, S.; Tan, Z.; Wu, X.; Feng, B. Chin. J. Org. Chem. 2017, 37, 3060(in Chinese).
(惠人杰, 张士伟, 谭政, 吴小培, 冯柏年, 有机化学, 2011, 37, 3060.)
(p) Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P. Green Chem. 2018, 20, 1662. -
[7]
(a) Magueur, G.; Crousse, B.; Charneau, S.; Grellier, P.; Bégué, J.-P.; Bonnet-Delpon, D. J. Med. Chem. 2004, 47, 2694.
(b) Frezza, M.; Balestrino, D.; Soulère, L.; Reverchon, S.; Queneau, Y.; Forestier, C.; Doutheau, A. Eur. J. Org. Chem. 2006, 2006, 4731.
(c) Chen, J.-L.; You, Z.-W.; Qing, F.-L. J. Fluorine Chem. 2013, 155, 143.
(d) Kim, S.; Kim, E.; Lee, W.; Hong, J. H. Nucleosides Nucleotides Nucleic Acids 2014, 33, 747.
(e) Kollatos, N.; Manta, S.; Dimopoulou, A.; Parmenopoulou, V.; Triantakonstanti, V. V.; Kellici, T.; Mavromoustakos, T.; Schols, D.; Komiotis, D. Carbohydr. Res. 2015, 407, 170.
(f) Shibata, H.; Tsuchikawa, H.; Hayashi, T.; Matsumori, N.; Murata, M.; Usui, T. Chem.-Asian J. 2015, 10, 915.
(g) Achmatowicz, M. M.; Allen, J. G.; Bio, M. M.; Bartberger, M. D.; Borths, C. J.; Colyer, J. T.; Crockett, R. D.; Hwang, T.-L.; Koek, J. N.; Osgood, S. A.; Roberts, S. W.; Swietlow, A.; Thiel, O. R.; Caille, S. J. Org. Chem. 2016, 81, 4736. -
[8]
(a) Yang, B.; Xu, X.-H.; Qing, F.-L. Chin. J. Chem. 2016, 34, 465.
(b) Li, T.; Yu, P.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. Chin. J. Chem. 2016, 34, 490. -
[9]
(a) Zhu, R.; Buchwald, S. L. J. Am. Chem. Soc. 2012, 134, 12462.
(b) Beniazza, R.; Molton, F.; Duboc, C.; Tron, A.; McClenaghan, N. D.; Lastécouères, D.; Vincent, J.-M. Chem. Commun. 2015, 51, 9571.
(c) Wang, Y.; Jiang, M.; Liu, J.-T. Adv. Synth. Catal. 2016, 358, 1322.
(d) Cheng, Y.-F.; Dong, X.-Y.; Gu, Q.-S.; Yu, Z.-L.; Liu, X.-Y. Angew. Chem., Int. Ed. 2017, 56, 8883. -
[10]
Noto, N.; Koike, T.; Akita, M. J. Org. Chem. 2016, 81, 7064. doi: 10.1021/acs.joc.6b00953
-
[11]
(a) Foulard, G.; Brigaud, T.; Portella, C. J. Fluorine Chem. 1998, 91, 179.
(b) Lin, R.; Sun, H.; Yang, C.; Shen, W.; Xia, W. Chem. Commun. 2015, 51, 399.
(c) Ryzhakov, D.; Jarret, M.; Guillot, R.; Kouklovsky, C.; Vincent, G. Org. Lett. 2017, 19, 6336. -
[12]
(a) Heaton, C. A.; Powell, R. L. J. Fluorine Chem. 1989, 45, 86.
(b) Kamigata, N.; Fukushima, T.; Yoshida, M. J. Chem. Soc., Chem. Commun. 1989, 1559.
(c) Nagib, D. A.; MacMillan, D. W. C. Nature 2011, 480, 224.
(d) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765.
(e) Chachignon, H.; Guyon, H.; Cahard, D. Beilstein J. Org. Chem. 2017, 13, 2800. -
[13]
(a) Yu, P.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890.
(b) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041.
(c) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357.
(d) Li, L.; Li, Z.-L.; Wang, F.-L.; Guo, Z.; Cheng, Y.-F.; Wang, N.; Dong, X.-W.; Fang, C.; Liu, J.; Hou, C.; Tan, B.; Liu, X.-Y. Nat. Commun. 2016, 7, 13852.
(e) Li, L.; Li, Z.-L.; Gu, Q.-S.; Wang, N.; Liu, X.-Y. Sci. Adv. 2017, 3, e1701487.
(f) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.
(g) Li, X.-T.; Gu, Q.-S.; Dong, X.-Y.; Meng, X.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 7668. -
[14]
(a) Yoon, T. P.; Ischay, M. A.; Du, J. Nat. Chem. 2010, 2, 527.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
(c) Teplý, F. Collect. Czech. Chem. Commun. 2011, 76, 859.
(d) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
(e) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
(f) Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Chem.-Eur. J. 2014, 20, 3874.
(g) Koike, T.; Akita, M. Inorg. Chem. Front. 2014, 1, 562.
(h) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355.
(i) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
(j) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
(k) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898.
(l) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
(m) Staveness, D.; Bosque, I.; Stephenson, C. R. J. Acc. Chem. Res. 2016, 49, 2295.
(n) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. Nat. Rev. Chem. 2017, 1, 52.
(o) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732. -
[15]
(a) Huang, L.; Ye, L.; Li, X.-H.; Li, Z.-L.; Lin, J.-S.; Liu, X.-Y. Org. Lett. 2016, 18, 5284.
(b) Li, Z.-L.; Li, X.-H.; Wang, N.; Yang, N.-Y.; Liu, X.-Y. Angew. Chem., Int. Ed. 2016, 55, 15100.
(c) Wang, N.; Li, L.; Li, Z.-L.; Yang, N.-Y.; Guo, Z.; Zhang, H.-X.; Liu, X.-Y. Org. Lett. 2016, 18, 6026.
(d) Wang, N.; Wang, J.; Guo, Y.-L.; Li, L.; Sun, Y.; Li, Z.; Zhang, H.-X.; Guo, Z.; Li, Z.-L.; Liu, X.-Y. Chem. Commun. 2018, 54, 8885. -
[16]
Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem.-Eur. J. 2013, 19, 6209. doi: 10.1002/chem.201300564
-
[17]
(a) Jiang, H.; Huang, C.; Guo, J.; Zeng, C.; Zhang, Y.; Yu, S. Chem.-Eur. J. 2012, 18, 15158.
(b) Jiang, H.; Cheng, Y.; Zhang, Y.; Yu, S. Eur. J. Org. Chem. 2013, 2013, 5485.
-
[1]
-
Table 1. Optimization of reaction conditionsa
Entry Catalyst Additive Solvent Yield/% 1 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O EtOAc 36 2 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DCM 70 3 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DCE 68 4 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O CH3CN 44 5 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O PhF 36 6 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DMF 21 7 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O DMSO Messy 8 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O THF 39 9 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O 1, 4-Dioxane 26 10 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O Cyclohexane Messy 11 [Ir(dtbbpy)(ppy)2]PF6 Na2HPO4•12H2O MeOH 39 12 [Ir(dtbbpy)(ppy)2]PF6 NaHCO3 DCM 55 13 [Ir(dtbbpy)(ppy)2]PF6 Na2CO3 DCM 56 14 [Ir(dtbbpy)(ppy)2]PF6 KHCO3 DCM 49 15 [Ir(dtbbpy)(ppy)2]PF6 K2CO3 DCM 31 16 Ru(bpy)3Cl2•6H2O Na2HPO4•12H2O DCM 45 17 9, 10-Dicyanoanthracene Na2HPO4•12H2O DCM 20 18 Ph-Acr-Me+ClO4- Na2HPO4•12H2O DCM 13 19 Mes-Me2Acr-Me+ ClO4- Na2HPO4•12H2O DCM 28 a Conditions: 1a (0.1 mmol), catalyst (1 mol%), CF3SO2Cl (1.5 equiv.), and additive (2 equiv.) in solvent (1 mL) under blue LED irradiation for 3 h. Yields were based on 19F NMR spectroscopy using α, α, α-trifluorotoluene as an internal standard. Table 2. Substrate scopea
a Conditions: 1 (0.2 mmol), [Ir(dtbbpy)(ppy)2]PF6 (1 mol%), CF3SO2Cl (1.5 equiv.), and Na2HPO4•12H2O (2 equiv.) in DCM (2 mL) under blue LED irradiation for 3 h, unless otherwise noted. Yields were isolated ones, unless otherwise noted. b Reaction time: 1 h. c Reaction Time: 1.5 h. d Yield was based on 19F NMR spectroscopy using α, α, α-trifluorotoluene as an internal standard. e Diastereomeric ratio was determined based on quantitative 13C NMR spectra of inseparable mixtures of both diastereomers. -

计量
- PDF下载量: 7
- 文章访问数: 873
- HTML全文浏览量: 102