Three Cu(Ⅱ) Complexes with 1-(3-Ethylpyrazin-2-yl)ethylidene)-4-methylthiosemicarbazide: Crystal Structures and DNA-Binding Properties

Mu-Xuan LÜ Lin-Yan BIAN Meng-Ru LI Yi YANG Wei-Na WU Yuan WANG Zhong CHEN

Citation:  LÜ Mu-Xuan, BIAN Lin-Yan, LI Meng-Ru, YANG Yi, WU Wei-Na, WANG Yuan, CHEN Zhong. Three Cu(Ⅱ) Complexes with 1-(3-Ethylpyrazin-2-yl)ethylidene)-4-methylthiosemicarbazide: Crystal Structures and DNA-Binding Properties[J]. Chinese Journal of Inorganic Chemistry, 2019, 35(8): 1463-1469. doi: 10.11862/CJIC.2019.169 shu

3-乙基-2-乙酰吡嗪缩4-甲基氨基硫脲Cu(Ⅱ)配合物的合成、结构和DNA结合性质

    通讯作者: 卞琳艳, bianlinyan@hpu.edu.cn
    吴伟娜, wuwn08@hpu.edu.cn
  • 基金项目:

    河南省自然科学基金 162300410011

    河南省教育厅高等学校重点科研基金 19A150001

    国家自然科学基金 21001040

    江西省教育厅科学技术研究项目 GJJ170665

    河南理工大学校内基金 T2018-3

    国家自然科学基金(No.21001040), 河南省自然科学基金(No.182300410183, 162300410011), 江西省自然科学基金项目(No.20181BAB206011), 河南省教育厅高等学校重点科研基金(No.19A150001), 江西省教育厅科学技术研究项目(No.GJJ170665), 河南理工大学校内基金(No.T2018-3, J2015-4)和江西科技师范大学校内基金(No.2015QNBJRC006)资助

    江西科技师范大学校内基金 2015QNBJRC006

    河南理工大学校内基金 J2015-4

    江西省自然科学基金项目 20181BAB206011

    河南省自然科学基金 182300410183

摘要: 合成并通过单晶衍射、元素分析、红外光谱表征了配合物[Cu(L)Br]·DMF(1),[Cu(L)Cl]·2H2O(2)和[Cu2(L)2(SO4)]·H2O·CH3OH(3)的结构(HL为3-乙基-2-乙酰吡嗪缩4-甲基氨基硫脲)。单晶衍射结果表明,配合物12中的Cu(Ⅱ)离子与来自1个缩氨基硫脲阴离子配体的N2S给体及1个卤素阴离子配位(12中分别为溴离子和氯离子),采取扭曲的平面正方形配位构型。而双核配合物3中,2个Cu(Ⅱ)中心由2个缩氨基硫脲配体的2个硫原子桥联形成Cu2S2簇,Cu…Cu距离为0.318 0 nm。每个Cu(Ⅱ)离子还与来自同一缩氨基硫脲配体的2个氮原子和处于外轴向位置η2-SO42-的1个氧原子配位,配位构型为扭曲的四方锥。此外,荧光光谱结果表明,配合物与DNA的相互作用强于配体。

English

  • Pyrazine-containing thiosemicarbazones (TSCs) have received considerable attention in chemistry and biology, primarily due to their marked and various biological properties[1-6]. Currently the most famous drug candidate of this class of compounds is Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone), which entered several phase Ⅰ and Ⅱ clinical trials as an antitumor chemotherapeutic agent[5-6]. In addition, earlier studies revealed that the biological properties of TSCs are often modulated by metal ion coordination[7-10]. In this regard, the complexes of TSCs bearing pyrazine unit usually displayed higher biological activity than the parent ligands due to the so-called metal-ligand synergism effect. Our previous work also shows that the interactions of the Ni(Ⅱ) and Zn(Ⅱ) complexes with DNA are stronger than that of the thiosemicarbazone ligand, namely 1-(3-ethylpyrazin-2-yl)ethylidene)-4-methylthiosemicarbazide (HL)[11].

    On the other hand, Cu(Ⅱ) containing anticancer agents are promising leads for next generation of metal-based anticancer agents because Cu(Ⅱ) plays a significant role in biological systems[8-9]. Furthermore, diverse structures of Cu(Ⅱ) complexes with TSCs could be obtained by varying the corresponding anions. As part of our continuous work on searching for bioactive compounds, three Cu(Ⅱ) complexes with HL were synthesized and characterized by X-ray diffraction methods. In addition, their DNA-binding properties have been investigated in detail.

    Scheme 1

    Scheme 1.  Synthetic route of the TSC ligand HL[11]

    Solvents and starting materials for syntheses were purchased commercially and used as received. Ligand HL was synthesized by the method reported by us[11]. Elemental analyses were carried out on an Elemental Vario EL analyzer. The IR spectra (ν=4 000~400 cm-1) were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer. The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer. DNA-binding properties of the ligand and three complexes were measured using literature method via emission spectra[12].

    Complex 1 was synthesized by reacting HL (0.5 mmol) with equimolar amount of CuBr2, CuCl2 or CuSO4 in methanol/DMF (10 mL, 1:1, V/V) solution at room temperature, respectively. The crystals suitable for X-ray diffraction analysis were obtained by evaporating the reaction solutions at room temperature.

    1: Black blocks. Yield: 77%. Anal. Calcd. for C13H21N6OSBrCu(%): C, 34.48; H, 4.67; N, 18.56; S, 7.08. Found(%): C, 34.25; H, 4.86; N, 18.28; S, 6.89. FT-IR (cm-1): ν(N=C) 1 523, ν(N=C, pyrazine) 1 456, ν(S=C) 858.

    2: Black plates. Yield 65%. Anal. Calcd. for C10H18N5O2SClCu(%): C, 32.35; H, 4.89; N, 18.86; S, 8.63. Found(%): C, 32.15; H, 4.99; N, 19.01; S, 8.53. FT-IR (cm-1): ν(N=C) 1 541, ν(N=C, pyrazine) 1 498, ν(S=C) 856.

    3: Black rods. Yield 53%. Anal. Calcd. for C21H34N10O6S3Cu2(%): C, 33.82; H, 4.59; N, 18.78; S, 12.90. Found(%): C, 33.45; H, 4.39; N, 18.75; S, 12.79. FT-IR (cm-1): ν(N=C) 1 541, ν(N=C, pyrazine) 1 500, ν(S=C) 860.

    The X-ray diffraction measurement for complexes 1 (crystal size: 0.16 nm×0.12 nm×0.10 mm), 2 (crystal size: 0.25 nm×0.12 nm×0.04 mm), and 3 (crystal size: 0.40 nm×0.20 nm×0.20 mm) was performed on a Bruker SMART APEX Ⅱ CCD diffractometer equipped with a graphite monochromatized Mo radiation (λ=0.071 073 nm) by using φ-ω scan mode. Semi-empirical absorption correction was applied to the intensity data using the SADABS program[13]. The structures were solved by direct methods and refined by full matrix least-square on F2 using the SHELXTL-97 program[14]. All non-hydrogen atoms were refined anisotropically. The H atoms for the O1 and O2 atoms of complex 2 were not added due to the special symmetric positions of these atoms. All the other H atoms were positioned geometrically and refined using a riding model. Details of the crystal parameters, data collection and refinements for complexes 1~3 are summarized in Table 1.

    Table 1

    Table 1.  Crystal data and structure refinement for complexes 1~3
    下载: 导出CSV
    1 2 3
    Empirical formula C13H21N6OSBrCu C10H18N5O2SClCu C21H34N10O6S3Cu2
    Formula weight 452.87 371.34 745.84
    T/K 296(2) 293(2) 293(2)
    Crystal system Triclinic Triclinic Triclinic
    Space group P1 P1 P1
    a / nm 0.773 2(6) 0.751 97(16) 0.972 81(17)
    b/ nm 0.982 2(9) 0.948 0(2) 1.116 5(2)
    c / nm 1.231 2(9) 1.174 0(3) 1.516 2(3)
    α/(°) 86.26(3) 110.591(3) 91.264(3)
    β/(°) 76.13(3) 92.228(3) 93.442(3)
    γ/(°) 74.49(3) 99.401(3) 109.496(3)
    V/ nm3 0.874 7(12) 0.768 7(3) 1.548 0(5)
    Z 2 2 2
    Dc / (g.cm-3) 1.719 1.604 1.600
    Goodness-of-fit (GOF) on F2 1.002 1.077 1.060
    Final R indices [I > 2σ(I)] R1=0.053 2, wR2=0.150 1 R1=0.031 8, wR2=0.094 5 R1=0.037 7, wR2=0.109 2
    R indices (all data) R1=0.082 6, wR2=0.136 5 R1=0.034 6, wR2=0.092 0 R1=0.044 9, wR2=0.103 7

    CCDC: 1884254, 1; 1884255, 2; 1884256, 3.

    A diamond drawing of complexes 1~3 is shown in Fig. 1. Selected bond distances and angles are listed in Table 2. The TSC ligand is anionic with C-S bond length in a range of 0.168 4(4)~0.173 2(4) nm in all three complexes. As shown in Fig. 1a and 1b, the structures of complexes 1 and 2 are similar, and the center Cu(Ⅱ) ion in each complex is coordinated by one thiosemicarbazone ligand with N2S donor set and one halide ion (bromide for 1 and chloride for 2), thus possessing a distorted planar square coordination geometry. The intermolecular N-H…O hydrogen bond between the complex and free DMF molecule is found in the crystal of 1. It should be noted that the O1 and O2 atoms occupy in special symmetric position in complex 2 and the H atoms for them are not added, while both of crystal water molecules are involved in a ladder-like supramolecular network, including inter-molecular N-H…O, O-H…N, O-H…Cl and O-H…O hydrogen bonds.

    Figure 1

    Figure 1.  ORTEP drawing of 1 (a), 2 (b), and 3 (d) with 30% thermal ellipsoids; (c) Ladder-like structure formed via N-H…O hydrogen bonds in complex 2

    Hydrogen bonds are shown in dashed line; Symmetry codes: 1-x, -y, -1-z; 1-x, -1-y, -1-z; -1+x, -1+y, -1+z

    Table 2

    Table 2.  Selected bond lengths (nm) and angles (°) in complexes 1~3
    下载: 导出CSV
    1
    Cu1-N1 0.202 0(5) Cu1-N3 0.190 9(5) Cu1-S1 0.220 2(2)
    Cu1-Br1 0.232 4(19)
    S1-Cu1-Br1 96.56(8) N3-Cu1-N1 79.2(2) N3-Cu1-S1 85.38(16)
    N1-Cu1-S1 163.04(14) N3-Cu1-Br1 177.64(15) N1-Cu1-Br1 99.08(15)
    2
    Cu1-N1 0.202 5(2) Cu1-N3 0.195 8(2) Cu1-S1 0.224 18(8)
    Cu1-C11 0.222 86(8)
    N3-Cu1-N1 79.43(9) N3-Cu1-C11 177.49(6) N3-Cu1-S1 85.74(7)
    N1-Cu1-C11 98.17(6) N1-Cu1-S1 162.98(6) C11-Cu1-S1 96.74(3)
    3
    Cu1-O1 0.193 4(2) Cu1-N1 0.200 6(3) Cu1-N3 0.194 0(3)
    Cu1-S1 0.226 83(9) Cu1-S2 0.283 21(10) Cu2-N6 0.201 1(3)
    Cu2-N8 0.194 3(3) Cu2-O2 0.194 6(2) Cu2-S1 0.277 58(10)
    Cu2-S2 0.226 50(9)
    O1-Cu1-N3 172.39(10) O1-Cu1-N1 92.70(10) O1-Cu1-S1 100.73(7)
    O1-Cu1-S2 92.80(8) O2-Cu2-N6 96.10(10) O2-Cu2-S1 97.20(8)
    O2-Cu2-S2 96.39(7) S1-Cu1-S2 95.37(3) S2-Cu2-S1 97.01(3)
    N1-Cu1-S1 164.24(8) N1-Cu1-S2 92.14(8) N3-Cu1-N1 80.00(10)
    N3-Cu1-S1 86.20(8) N3-Cu1-S2 89.63(8) N6-Cu2-S2 162.31(8)
    N6-Cu2-S1 93.80(8) N8-Cu2-N6 79.86(10) N8-Cu2-S2 86.15(8)
    N8-Cu2-O2 171.97(10) N8-Cu2-S1 90.02(8)

    Table 3

    Table 3.  Hydrogen bond parameters for complexes 1~3
    下载: 导出CSV
    D-H …A d(D-H) / nm d(H …A) / nm d(D …A)/ nm ∠D-H…A/(°)
    1
    N5-H5 …O1 0.086 0.198 0.279 1(8) 158
    2
    O2 …Cll 0.331 9
    O2 …O2 0.281 9
    O1 …O1 0.282 2
    O1 …N2 0.229 5
    N5-H5 …O1 0.086 0.210 0.293 2(3) 162.0
    3
    N5-H5 …O6 0.086 0.211 0.293 2(5) 160.4
    N10-H10 …O5 0.086 0.207 0.286 4(4) 153.5
    O5-H5D …O4 0.085 0.198 0.282 3(4) 168.6
    O5-H5C …N2 0.085 0.225 0.301 6(4) 150.8
    O6-H4 …O6 0.082 0.210 0.279 8(4) 142.8
    Symmetry codes: 1-x, -y, -1-z; 1-x, -1-y, -1-z; -1+x, -1+y, -1+z; x+1, y, z; x, -1+y, z; -x, 1-y, -z

    In the asymmetric unit of complex 3, there exist one dimeric Cu(Ⅱ) complex, one free water and one methanol molecules. Two Cu(Ⅱ) ions were doubly bridged by two S atoms of two TSC ligands to form a Cu2S2 core with Cu…Cu distance of 0.318 0 nm. Each of the Cu(Ⅱ) ions is also coordinated by two N atoms from one TSC ligand and one O atom from the η2-SO42- anion at the outer axial site. According to the Addison rule[15], the geometric index τ is 0.136 and 0.161 for Cu1 and Cu2, respectively, indicating that the coordination geometry of each Cu(Ⅱ) ion is best described as a distorted tetragonal pyramid rather than trigonal biyramid. In addition, in the solid state, intermolecular N-H…O, O-H…N, and O-H…O hydrogen bonds are helpful to construct a three dimensional supramolecular network.

    The infrared spectral bands most useful for determining the coordination mode of the ligand are the ν(N=C), ν(N=C, pyrazine) and ν(S=C) vibrations. Such three bonds of the free TSC ligand were found at 1 544, 1 502 and 863 cm-1 [11], respectively, while they shifted to lower frequency in complexes 1~3, clearly indicating the coordination of imine N, pyrazine N and S atoms[1-2, 16-17]. It is in accordance with the X-ray diffraction analysis result.

    The UV spectra of HL[11] and complexes 1~3 in DMSO solution (concentration: 10 μmol·L-1) were measured at room temperature (Fig. 2). The spectrum of HL featured only one main band located around 299 nm (ε=34 026 L·mol-1·cm-1)[11], which could be assigned to characteristic π-π* transition of pyrazine unit[12]. Similar bands were observed at 324 nm (ε= 39 263 L·mol-1·cm-1), 327 nm (ε=18 260 L·mol-1·cm-1) and 317 nm (ε=139 830 L·mol-1·cm-1) in complexes 1~3, respectively. However, the new bonds at 437 nm (ε=27 771 L·mol-1·cm-1), 432 nm (ε=16 202 L·mol-1·cm-1) and 433 nm (ε=87 930 L·mol-1·cm-1) could be observed in spectra of 1~3, respectively, probably due to the ligand-to-metal charge transfer (LMCT)[16]. This indicates that an extended conjugation is formed in anionic ligand after complexation in the complexes.

    Figure 2

    Figure 2.  UV spectra of complexes 1~3 in DMSO solution at room temperature

    It is well known that EB can intercalate into DNA to induce strong fluorescence emission. Competitive binding of other drugs to DNA and EB will result in displacement of bounding EB and a decrease in the fluorescence intensity[15]. Fig. 3 shows the effects of the ligand and complexes 1~3 (10 μmol·L-1) on the fluorescence spectra of EB-DNA system. The fluorescence intensities of EB bound to ct-DNA at about 600 nm showed remarkable decreasing trend with the increasing concentration of each tested compound, indicating that some EB molecules are released into solution after the exchange with the compound. The quenching of EB bound to DNA by the compound is in agreement with the linear Stern-Volmer equation: I0/I=1+Ksqr[16], where I0 and I represent the fluorescence intensities in the absence and presence of quencher, respectively; Ksq is the linear Stern-Volmer quenching constant; r is the ratio of the concentration of quencher and DNA. In the quenching plots of I0/I versus r, Ksq values are given by the slopes. The Ksq values were 0.484, 1.465, 1.133 and 1.827 for HL[11] and complexes 1~3, respectively, indicating that interaction of the complexes with DNA is much stronger than HL[11]. This is probably due to the structure rigidity and metal-ligand synergism effect of the complexes[13]. Complex 3 exhibits the highest activity among the three complexes, which is consistent with the demonstration that the activity of polynuclear complex is stronger than that of mononuclear one[18].

    Figure 3

    Figure 3.  Emission spectra of EB-DNA system in the presence of complexes 1~3 (a~c, respectively)

    Arrow shows the fluorescence intensities change of EB-DNA system upon increasing tested compound concentration; Inset: plot of I0/I versus r

    Three complexes with a pyrazine-containing thiosemicarbazone ligand were prepared and characterized by single-crystal X-ray crystallography. In addition, the fluorescence spectra indicated that the interaction of the complexes to DNA is stronger than that of the ligand HL. Particularly, complex 3 exhibits the highest activity among the three complexes, which is consistent with the demonstration that the activity of polynuclear complex is stronger than that of mononuclear one. Further research is needed to better determine the relationship between structures and activities.

    1. [1]

      Li M X, Zhang L Z, Yang M, et al. Bioorg. Med. Chem. Lett., 2012, 22:2418-2433 doi: 10.1016/j.bmcl.2012.02.024

    2. [2]

      Li M X, Zhang L Z, Zhang D, et al. Eur. J. Med. Chem., 2011, 46:4383-4390 doi: 10.1016/j.ejmech.2011.07.009

    3. [3]

      Qi J, Deng J, Qian K, et al. Eur. J. Med. Chem., 2017, 134:34-42 doi: 10.1016/j.ejmech.2017.04.009

    4. [4]

      Rogolino D, Cavazzoni A, Gatti A, et al. Eur. J. Med. Chem., 2017, 128:140-153 doi: 10.1016/j.ejmech.2017.01.031

    5. [5]

      Erxleben A. Coord. Chem. Rev., 2018, 360:92-121 doi: 10.1016/j.ccr.2018.01.008

    6. [6]

      Dubey P, Gupta S, Singh A K, et al. Dalton Trans., 2018, 47:3746-3774

    7. [7]

      Zhang X M, Guo H, Li Z S, et al. Eur. J. Med. Chem., 2015, 101:419-430 doi: 10.1016/j.ejmech.2015.06.047

    8. [8]

      Sangeetha K G, Aravindakshan K K. Inorg. Chim. Acta, 2018, 469:387-396 doi: 10.1016/j.ica.2017.09.057

    9. [9]

      Milunovic M N M, Dobrova A, Novitchi G, et al. Eur. J. Inorg. Chem., 2017, 469:4473-4483

    10. [10]

      Wang Y T, Fang Y, Zhao M, et al. MedChemComm, 2017, 8(11):2125-2132 doi: 10.1039/C7MD00415J

    11. [11]

      王碗碗, 王元, 吴伟娜, 等.无机化学学报, 2018, 34:1511-1516 doi: 10.11862/CJIC.2018.196WANG Wan-Wan, WANG Yuan, WU Wei-Na, et al. Chinese J. Inorg. Chem., 2018, 34:1511-1516 doi: 10.11862/CJIC.2018.196

    12. [12]

      林龙, 李先宏, 张波, 等.无机化学学报, 2017, 33:143-148 doi: 10.11862/CJIC.2016.283LIN Long, LI Xian-Hong, ZHANG Bo, et al. Chinese J. Inorg. Chem., 2017, 33:143-148 doi: 10.11862/CJIC.2016.283

    13. [13]

      Sheldrick G M. SADABS, University of Göttingen, Germany, 1996.

    14. [14]

      Sheldrick G M. SHELX-97, Program for the Solution and the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    15. [15]

      Addison A W, Rao T N. J. Chem. Soc. Dalton Trans., 1984:1349-1356

    16. [16]

      毛盼东, 赵晓雷, 邵志鹏, 等.无机化学学报, 2017, 33:890-896 doi: 10.11862/CJIC.2017.109MAO Pan-dong, ZHAO Xiao-Lei, SHAO Zhi-Peng, et al. Chinese J. Inorg. Chem., 2017, 33:890-896 doi: 10.11862/CJIC.2017.109

    17. [17]

      Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th Ed. New York:Wiley, 1986:257

    18. [18]

      Tu C, Shao Y, Gan N, et al. Inorg. Chem., 2004, 43:4761-4766 doi: 10.1021/ic049731g

  • Scheme 1  Synthetic route of the TSC ligand HL[11]

    Figure 1  ORTEP drawing of 1 (a), 2 (b), and 3 (d) with 30% thermal ellipsoids; (c) Ladder-like structure formed via N-H…O hydrogen bonds in complex 2

    Hydrogen bonds are shown in dashed line; Symmetry codes: 1-x, -y, -1-z; 1-x, -1-y, -1-z; -1+x, -1+y, -1+z

    Figure 2  UV spectra of complexes 1~3 in DMSO solution at room temperature

    Figure 3  Emission spectra of EB-DNA system in the presence of complexes 1~3 (a~c, respectively)

    Arrow shows the fluorescence intensities change of EB-DNA system upon increasing tested compound concentration; Inset: plot of I0/I versus r

    Table 1.  Crystal data and structure refinement for complexes 1~3

    1 2 3
    Empirical formula C13H21N6OSBrCu C10H18N5O2SClCu C21H34N10O6S3Cu2
    Formula weight 452.87 371.34 745.84
    T/K 296(2) 293(2) 293(2)
    Crystal system Triclinic Triclinic Triclinic
    Space group P1 P1 P1
    a / nm 0.773 2(6) 0.751 97(16) 0.972 81(17)
    b/ nm 0.982 2(9) 0.948 0(2) 1.116 5(2)
    c / nm 1.231 2(9) 1.174 0(3) 1.516 2(3)
    α/(°) 86.26(3) 110.591(3) 91.264(3)
    β/(°) 76.13(3) 92.228(3) 93.442(3)
    γ/(°) 74.49(3) 99.401(3) 109.496(3)
    V/ nm3 0.874 7(12) 0.768 7(3) 1.548 0(5)
    Z 2 2 2
    Dc / (g.cm-3) 1.719 1.604 1.600
    Goodness-of-fit (GOF) on F2 1.002 1.077 1.060
    Final R indices [I > 2σ(I)] R1=0.053 2, wR2=0.150 1 R1=0.031 8, wR2=0.094 5 R1=0.037 7, wR2=0.109 2
    R indices (all data) R1=0.082 6, wR2=0.136 5 R1=0.034 6, wR2=0.092 0 R1=0.044 9, wR2=0.103 7
    下载: 导出CSV

    Table 2.  Selected bond lengths (nm) and angles (°) in complexes 1~3

    1
    Cu1-N1 0.202 0(5) Cu1-N3 0.190 9(5) Cu1-S1 0.220 2(2)
    Cu1-Br1 0.232 4(19)
    S1-Cu1-Br1 96.56(8) N3-Cu1-N1 79.2(2) N3-Cu1-S1 85.38(16)
    N1-Cu1-S1 163.04(14) N3-Cu1-Br1 177.64(15) N1-Cu1-Br1 99.08(15)
    2
    Cu1-N1 0.202 5(2) Cu1-N3 0.195 8(2) Cu1-S1 0.224 18(8)
    Cu1-C11 0.222 86(8)
    N3-Cu1-N1 79.43(9) N3-Cu1-C11 177.49(6) N3-Cu1-S1 85.74(7)
    N1-Cu1-C11 98.17(6) N1-Cu1-S1 162.98(6) C11-Cu1-S1 96.74(3)
    3
    Cu1-O1 0.193 4(2) Cu1-N1 0.200 6(3) Cu1-N3 0.194 0(3)
    Cu1-S1 0.226 83(9) Cu1-S2 0.283 21(10) Cu2-N6 0.201 1(3)
    Cu2-N8 0.194 3(3) Cu2-O2 0.194 6(2) Cu2-S1 0.277 58(10)
    Cu2-S2 0.226 50(9)
    O1-Cu1-N3 172.39(10) O1-Cu1-N1 92.70(10) O1-Cu1-S1 100.73(7)
    O1-Cu1-S2 92.80(8) O2-Cu2-N6 96.10(10) O2-Cu2-S1 97.20(8)
    O2-Cu2-S2 96.39(7) S1-Cu1-S2 95.37(3) S2-Cu2-S1 97.01(3)
    N1-Cu1-S1 164.24(8) N1-Cu1-S2 92.14(8) N3-Cu1-N1 80.00(10)
    N3-Cu1-S1 86.20(8) N3-Cu1-S2 89.63(8) N6-Cu2-S2 162.31(8)
    N6-Cu2-S1 93.80(8) N8-Cu2-N6 79.86(10) N8-Cu2-S2 86.15(8)
    N8-Cu2-O2 171.97(10) N8-Cu2-S1 90.02(8)
    下载: 导出CSV

    Table 3.  Hydrogen bond parameters for complexes 1~3

    D-H …A d(D-H) / nm d(H …A) / nm d(D …A)/ nm ∠D-H…A/(°)
    1
    N5-H5 …O1 0.086 0.198 0.279 1(8) 158
    2
    O2 …Cll 0.331 9
    O2 …O2 0.281 9
    O1 …O1 0.282 2
    O1 …N2 0.229 5
    N5-H5 …O1 0.086 0.210 0.293 2(3) 162.0
    3
    N5-H5 …O6 0.086 0.211 0.293 2(5) 160.4
    N10-H10 …O5 0.086 0.207 0.286 4(4) 153.5
    O5-H5D …O4 0.085 0.198 0.282 3(4) 168.6
    O5-H5C …N2 0.085 0.225 0.301 6(4) 150.8
    O6-H4 …O6 0.082 0.210 0.279 8(4) 142.8
    Symmetry codes: 1-x, -y, -1-z; 1-x, -1-y, -1-z; -1+x, -1+y, -1+z; x+1, y, z; x, -1+y, z; -x, 1-y, -z
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  9
  • 文章访问数:  767
  • HTML全文浏览量:  36
文章相关
  • 发布日期:  2019-08-10
  • 收稿日期:  2018-12-13
  • 修回日期:  2019-05-20
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章