Volumetric Properties of Aqueous Li2SO4-Na2SO4-H2O and Li2SO4-K2SO4-H2O Solutions

Xiuzhen Ma Bin Hu

Citation:  Ma Xiuzhen, Hu Bin. Volumetric Properties of Aqueous Li2SO4-Na2SO4-H2O and Li2SO4-K2SO4-H2O Solutions[J]. Chemistry, 2018, 81(10): 939-943, 938. shu

Li2SO4-Na2SO4-H2O和Li2SO4-K2SO4-H2O溶液的体积性质

    通讯作者: 胡斌, hubin@isl.ac.cn
  • 基金项目:

    青海省应用基础研究项目 2017-ZJ-704

    国家自然科学基金项目 41472078

    国家自然科学基金项目(41472078)和青海省应用基础研究项目(2017-ZJ-704)资助

摘要: 本文用高精度数字式振荡管密度计测定了288K至318K温度范围内三元体系Li2SO4-Na2SO4-H2O和Li2SO4-K2SO4-H2O的密度。溶液的离子强度范围从0.1到4.5mol·kg-1,在两种混合溶液中Na2SO4和K2SO4的离子强度分数为0.2,0.4,0.6和0.8。用密度实验值拟合得到了不同温度下Pitzer离子相互作用模型混合参数θVψV,模型的计算值与实验值的偏差在±0.002 g·cm-3以内。用Pitzer模型计算了不同离子强度下三元体系的混合体积。

English

  • Salt lakes are widely distributed in the Qinghai-Tibet plateau and abundant in high concentration of lithium, potassium and boron. The composition of salt lake brine can be represented as Li+-Na+-K+-Mg2+-Cl--SO42--B2O3-H2O system. Knowledge of the volumetric characteristics, such as density, volume of mixing, has a guiding role in salt lake brine evaporation process control and solar pond design[1]. Such data also provide valuable insight into the interaction behavior of mixed electrolyte solutions. To the best of our knowledge, volumetric properties for aqueous ternary subsystems of complex salt lake brine are not available due to the scarcity of reliable density data. Oscillating U-tube densimeter was employed in densities determination of Li2SO4-Na2SO4-H2O and Li2SO4-K2SO4-H2O by Guo et al and Bu et al respectively[2, 3]. But the main purposes of the above-mentioned publications focused on phase equilibrium research. Volumetric properties were not conducted in these publications.

    In this study, the densities of aqueous solutions of Li2SO4-Na2SO4-H2O, Li2SO4-K2SO4-H2O over the temperature range 288 ≤ T/K ≤ 318 were determined with high precision vibrating-tube densimetry. The experimental densities were correlated with the Pitzer thermodynamic model. The volume of mixing at constant ionic strength and at 298.15 K for each of the ternary systems was calculated.

    All reagents (purchased from Aladdin Co.) were of analytical reagent grade and used directly without further purification (lithium sulfate 99.9%, sodium sulfate ≥99.0%, potassium sulfate 99.99%). The stock solutions were prepared by dissolving solutes in distilled deionized water, respectively. The molalities of the sulfate stock solutions were determined gravimetrically by precipitation of sulfate as BaSO4(s). Stock solution molality determinations were done with 5 replicate samples and reproducible to ≤0.08%. The tested ternary aqueous solutions were prepared by using an analytical balance with a precision of ±0.1mg, the two stock solutions and the water were weighed in appropriate proportions according to the desired concentrations using mass burettes.

    Densities were measured using an Anton Paar (Austria) vibrating-tube densitometer (DMA 5000) following the experimental protocol described in detail previously[4]. Temperatures were controlled to ±0.002K at the intervals of 288≤T/K≤318. The densitometer was calibrated with laboratory air and high purity degassed water at 293K before measure-ment. Following the calibration, densities of water and target solutions were measured. The reprod-ucibility of the densities were always within the range ±(2~10) μg·cm-3.

    The density of a mixture of aqueous electrolytes is expressed as:

    $ \rho = \left( {1000 + \sum {{m_i}{M_i}} } \right)/\left( {\frac{{1000}}{{{\rho _0}}} + \sum {{m_i}\bar V_i^0 + {V^{ex}}} } \right) $

    (1)

    where mi and Mi are the molality and the molecular weight of the electrolyte i in the mixture, respectively. ${\bar V_i^0}$ is the apparent molar volume of electrolyte i at infinite dilution. ρ0 is the water density. Vex represents the excess volume of the mixture. Vex is determined with the Pitzer model, whose general equation is:

    $ \begin{array}{l} V_{mix}^{ex} = {A_V}\left( {\frac{1}{b}} \right)\ln \left( {1 + b{I^{\frac{1}{2}}}} \right) + \\ RT\left\{ {2\sum\limits_c {\sum\limits_a {{m_c}{m_a}\left[ {B_{c, a}^V + \left( {\sum\limits_c {{m_c}{z_c}} } \right)C_{c, a}^V} \right]} } + } \right.\\ \sum\limits_c {\sum\limits_{c'} {{m_c}{m_c}\left( {2\theta _{c, c'}^V + \sum\limits_a {{m_a}\mathit{\Psi }_{c, c', a}^V} } \right) + } } \\ \left. {\sum\limits_a {\sum\limits_{a'} {{m_a}{m_{a'}}\left( {2\theta _{a, a'}^V + \sum\limits_c {{m_c}\mathit{\Psi }_{a, a', c}^V} } \right)} } } \right\} \end{array} $

    (2)

    with

    $ B_{{\rm{c, a}}}^{\rm{V}} = \beta _{{\rm{c, a}}}^{\left( 0 \right){\rm{V}}} + \beta _{{\rm{c, a}}}^{\left( 1 \right){\rm{V}}} \cdot {\rm{g}}\left( {{\alpha _1}\sqrt I } \right) + \beta _{{\rm{c, a}}}^{\left( 2 \right){\rm{V}}} \cdot {\rm{g}}\left( {{\alpha _2}\sqrt I } \right) $

    (3)

    $ \begin{array}{l} \;\;\;\;\;\;{\rm{g}}\left( {{\alpha _i} \cdot \sqrt I } \right) = \frac{2}{{{{\left( {{\alpha _i}\sqrt I } \right)}^2}}} \cdot \\ \left[ {1 - \left( {1 + {\alpha _i}\sqrt I } \right) \cdot \exp \left( { - {\alpha _i}\sqrt I } \right)} \right] \end{array} $

    (4)

    where the symbols have the usual meanings[5]. Theoretical Debye-Hückel slope (AV) used in the fit was obtained using the equations developed by Krumgalz[6].

    The volume of mixing at constant ionic strength is defined as the difference between the excess of the mixture volume and the sum of the excess volume of the pure-electrolyte components.

    $ {V_{\rm{M}}} = {V^{{\rm{ex}}}}\left( {{\rm{mixture}}} \right) - \left[ {{y_2}{V^{{\rm{ex}}}}\left( 2 \right) + \left( {1 - {y_2}} \right){V^{{\rm{ex}}}}\left( 1 \right)} \right. $

    (5)

    where y2 is the ionic strength fraction of Na2SO4 or K2SO4 in the ternary systems and is defined by y2=I2/(I1+I2).

    Experimental density data of ternary systems Li2SO4-Na2SO4-H2O and Li2SO4-K2SO4-H2O are summarized in Tab. 1. I represents the total ionic strength, and m2 represents the molality of the second electrolyte Na2SO4 or K2SO4 in ternary systems. Solution densities, ρ, are based on the water densities, ρw, at the target temperatures. The standard densities of water were calculated from the polynomial proposed by Kell[7]. The measured quantity Δρ=ρ-ρw is independent of the model representing ρw. From the data in Tab. 1, the solution densities can be trivially calculated.

    Table 1

    表 1  实验测定的各温度下Li2SO4-Na2SO4-H2O和Li2SO4-K2SO4-H2O溶液密度与纯水的密度差Δρ
    Table 1.  Results of experimental measurements of density differences Δρ of Li2SO4-Na2SO4-H2O, Li2SO4-K2SO4-H2O systems with respect to pure water at temperatures Ta
    下载: 导出CSV
    I/
    (mol·kg-1)
    m2 /
    (mol·kg-1)
    y2 288K
    Δρ/
    (kg·m-3)
    293K
    Δρ/
    (kg·m-3)
    298K
    Δρ/
    (kg·m-3)
    303K
    Δρ/
    (kg·m-3)
    308K
    Δρ/
    (kg·m-3)
    313K
    Δρ/
    (kg·m-3)
    318K
    Δρ/
    (kg·m-3)
    Li2SO4+ Na2SO4 + H2O
    0.1002 0.0069 0.2064 3.459 3.430 3.405 3.386 3.371 3.361 3.355
    0.0999 0.0131 0.3931 3.653 3.622 3.593 3.569 3.552 3.538 3.525
    0.1005 0.0203 0.6059 3.896 3.874 3.840 3.811 3.789 3.771 3.757
    0.1008 0.0266 0.7924 4.116 4.073 4.034 4.002 3.975 3.955 3.936
    0.9993 0.0666 0.1998 32.944 32.678 32.465 31.932 31.932 31.929 31.915
    1.0020 0.1337 0.4004 35.220 34.912 34.652 34.441 34.270 34.136 34.034
    0.9987 0.1998 0.6002 36.831 36.339 35.968 35.662 35.418 35.243 35.181
    0.9993 0.2665 0.8000 38.973 38.513 38.130 37.780 37.483 37.236 37.043
    2.9973 0.1997 0.1999 93.094 92.545 92.086 91.706 91.405 91.168 90.982
    2.9985 0.4000 0.4002 99.094 98.403 97.814 97.323 96.922 96.598 96.341
    3.0003 0.5999 0.5998 104.929 104.293 103.625 103.046 102.556 102.151 101.815
    2.9997 0.8001 0.8002 110.969 110.047 109.258 108.579 108.000 107.507 107.089
    4.4997 0.3000 0.2000 134.613 133.854 133.239 132.749 132.368 132.081 131.876
    4.4994 0.5999 0.4000 142.990 142.127 141.387 140.764 140.232 139.764 139.434
    4.5006 0.9001 0.6000 151.632 150.595 149.708 148.957 148.324 147.794 147.356
    4.4988 1.2000 0.8002 159.250 158.084 157.076 156.203 155.451 154.808 154.258
    Li2SO4 + K2SO4 + H2O
    0.0990 0.0066 0.2008 3.505 3.473 3.451 3.432 3.419 3.411 3.403
    0.1008 0.0133 0.3969 3.869 3.835 3.807 3.785 3.769 3.756 3.747
    0.0987 0.0198 0.6015 4.107 4.069 4.038 4.013 3.993 3.977 3.966
    0.0981 0.0266 0.8141 4.391 4.350 4.315 4.285 4.264 4.245 4.230
    0.9993 0.0665 0.1997 33.772 33.521 33.319 33.158 33.037 32.944 32.880
    0.9999 0.1334 0.4002 36.699 36.421 36.187 35.997 35.846 35.727 35.637
    0.9633 0.2009 0.6258 38.602 38.296 38.036 37.819 37.641 37.497 37.382
    0.9999 0.2667 0.8002 42.521 42.167 41.870 41.619 41.411 41.237 41.096
    1.9992 0.1334 0.2002 65.480 65.044 64.691 64.411 64.197 64.036 63.925
    1.9998 0.2666 0.4000 70.886 70.416 70.011 69.678 69.415 69.211 69.054
    1.9992 0.4002 0.6005 76.634 76.088 75.630 75.245 74.929 74.673 74.468
    1.9998 0.5334 0.8001 82.065 81.462 80.943 80.506 80.141 79.835 79.584
    2.5002 0.1666 0.1999 80.554 80.041 79.632 79.308 79.058 78.873 78.742
    2.5005 0.3333 0.3998 87.480 86.922 86.450 86.064 85.755 85.513 85.329
    2.4999 0.5003 0.6004 94.105 93.468 92.928 92.479 92.110 91.808 91.568
      a Standard uncertainties u are u(T)=0.002K, u(p)=1kPa, uρ)=0.005kg·m-3, u(m)=0.0007 for Li2SO4, u(m)=0.0008 for Na2SO4 and u(m)=0.0006 for K2SO4.

    For values that have constant ion strength I, the densities of the two ternary systems decrease as the temperatures increase. It can be ascribed to the expansion of the volume of the solution, which is due to the increase of the temperature of the system. It is clear that for constant I and temperature the densities of both ternary systems increase with the increase of y2, which tends to reach the value of density of the second electrolyte (y2=1). This behavior occurs while the density value of the Na2SO4-H2O or K2SO4-H2O system is higher than that of the Li2SO4-H2O system within the concentration interval evaluated this work.

    Experimental data in Tab. 1 were correlated using equation (2), for which the excess molar volumes of ternary systems were derived from equation (1). The volumetric ion interaction parameters (VMX0, βMX(0)V, βMX(1)V, CMXV) at different temperatures for single electrolytes were listed in Table 2. The parameters of Na2SO4, K2SO4 obtained from polynomial proposed by Krumgalz et al[6]. The parameters of Li2SO4 were cited from our previously published paper[8].These parameters were used in the correlation of the two ternary systems.

    Table 2

    表 2  不同温度下的Pitzer体积参数
    Table 2.  Volumetric Pitzer parameters at different temperatures
    下载: 导出CSV
    T/K 288 293 298 303 308 313 318
    Li2SO4
    VMX0 (cm3·mol-1) 11.4165 11.9965 12.4500 12.7278 12.8233 12.8062 12.6779
    β(0)V×105 (kg·mol-1·bar-1) 3.5477 3.0314 2.7393 2.4674 2.2393 2.0745 1.9358
    β(1)V×105 (kg·mol-1·bar-1) -5.1539 -5.8359 -7.6886 -9.1991 -10.4017 -11.8396 -13.2710
    CV×106 (kg2·mol-2·bar-1) -1.4645 -1.0967 -0.9517 -0.7997 -0.6785 -0.6111 -0.5573
    Na2SO4
    VMX0 (cm3·mol-1) 9.0503 10.5253 11.7760 12.8156 13.6574 14.3148 14.8011
    β(0)V×105 (kg·mol-1·bar-1) 7.0225 6.0169 5.3250 4.9123 4.7440 4.7855 5.0021
    β(1)V×105 (kg·mol-1·bar-1) 1.6858 1.5150 1.2932 1.0048 0.6616 0.2750 -0.1432
    CV×106(kg2·mol-2·bar-1) -5.0204 -3.7013 -2.9140 -2.6031 -2.7133 -3.1892 -3.9757
    K2SO4
    VMX0 (cm3·mol-1) 29.8538 31.1524 32.2300 33.1017 33.7818 34.2839 34.6209
    β(0)V×105 (kg·mol-1·bar-1) -1.0017 -0.3727 0.1105 0.4618 0.6948 0.8237 0.8621
    β(1)V×105 (kg·mol-1·bar-1) 6.2864 4.2352 2.6016 1.3484 0.4381 -0.1667 -0.5034
    CV×106 (kg2·mol-2·bar-1) 7.4103 4.1365 1.6192 -0.2184 -1.4529 -2.1609 -2.4191

    The mixing parameters θLiNaV, θLiKV, ψLiNaSO4V, ψLiKSO4V for the ternary systems can be calculated from experimental densities listed in Tab. 1 by using Least-Squares method. The values of Pitzer mixing parameters and the standard deviation of the two ternary systems were correlated and listed in Tab. 3.

    Table 3

    表 3  不同温度下的Pitzer混合参数
    Table 3.  Mixing parameters at different temperatures
    下载: 导出CSV
    T/K θLiNaV×105 ψLiNaSO4V×105 SD1 θLiKV×105 ψLiKSO4V×105 SD2
    288 5.9102 -4.4308 0.00053 0.2357 -3.5767 0.00052
    0 0 0.0016 0 0 0.00056
    293 5.6107 -4.0375 0.00054 0.1059 0.4394 0.00047
    0 0 0.0016 0 0 0.00047
    298 5.6499 -4.0734 0.00061 0.1671 3.2257 0.00043
    0 0 0.0017 0 0 0.00050
    303 5.8949 -4.3481 0.00066 0.2701 5.1669 0.00041
    0 0 0.0017 0 0 0.00071
    308 5.9826 -4.3635 0.00068 0.4085 6.3911 0.00040
    0 0 0.0013 0 0 0.00066
    313 6.0911 -4.3638 0.00071 0.6312 6.8783 0.00040
    0 0 0.0019 0 0 0.00073
    318 6.2433 -4.4104 0.00073 0.9087 6.7930 0.00041
    0 0 0.0020 0 0 0.00078

    In this table, SD1 and SD2 are the standard deviations of the systems Li2SO4-Na2SO4-H2O and Li2SO4-K2SO4-H2O respectively. In general, the quality of the fit is better when the mixing parameters are considered (option 1) than not considered ones at all (option 2). The abilities of the Pitzer model to fit the data over wide ranges of concentrations and temperatures are illustrated as deviation plots in Fig. 1 and Fig. 2. Maximum deviations between the experimental density data and those calculated from Pitzer model using the parameters in Tab. 1 and Tab. 2 were always ≤ ±0.002 (for Li2SO4-Na2SO4-H2O system) or ≤ ±0.0015 (for Li2SO4-K2SO4-H2O system).

    Figure 1

    图 1.  Li2SO4-Na2SO4-H2O体系密度计算值与实验值偏差
    Figure 1.  Density deviations of Pitzer model from experimental data of the Li2SO4-Na2SO4-H2O system

    Figure 2

    图 2.  Li2SO4-K2SO4-H2O体系密度计算值与实验值偏差
    Figure 2.  Density deviations of Pitzer model from experimental data of the Li2SO4-K2SO4-H2O system

    Values of volume of mixing at 298 K for the ternary systems were obtained by using eq.(2) and eq.(5). Fig. 3 shows the values of ΔVM versus y2 for the systems Li2SO4-Na2SO4-H2O, Li2SO4-K2SO4-H2O respectively. Open symbols are calculated values of volume of mixing and different curves correspond to different I (total ionic strength) values in each figure. It is clear that the values of volume of the mixing are obviously positive over the entire interval of y2 for the two ternary systems. Also, the values of ΔVM become more positive as I increase.

    Figure 3

    图 3.  Li2SO4-Na2SO4-H2O(上)和Li2SO4-K2SO4-H2O(下)体系的混合体积
    Figure 3.  Volumes of mixing of the system of Li2SO4-Na2SO4-H2O, Li2SO4-K2SO4-H2O (top to bottom respectively) at 298K

    The positive ΔVM value indicates that the excess volume of mixtures is greater than the two binary mixtures before mixing. This indicates that the final ternary mixture reaches a less-compact configuration, leading to a greater volume of the system. The presence of the two electrolytes probably does not greatly disturb the water structure because an overall decrease in the structure of water implies a breakage of hydrogen bonds, which contributes to a decrease in volume[9]. According to Desnoyers et al[10], mixing two solutes with the different ability to orient water molecules (one is a structure maker and the other is a structure breaker)would result in an attraction with an increase in volume.

    This work provides reliable experimental data of volumetric properties of mixed aqueous Li2SO4- Na2SO4-H2O and Li2SO4-K2SO4-H2O solutions. This information is important in the design and control of brine evaporation processes. The data obtained for wide ranges of temperatures were used for parameterization of Pitzer mixing model that describes the volumetric properties of multi-component solutions. The values of volume of mixing (ΔVM) at 298 K were obtained, which indicates that the two binary solutes possess an opposite ability for orientating water molecular resulting in the increase of volume after mixing.


    1. [1]

      S Wang. J. Salt Lake Res., 2000, 8(4):44~49.

    2. [2]

      Y Guo, Y Liu, Q Wang. J. Chem. Eng. Data, 2011, 56(9):3585~3588. doi: 10.1021/je200429a

    3. [3]

      B Bu, L Li. N Zhang. Fluid Phase Equilibria, 2015, 402(18):78~82.

    4. [4]

      B Hu, L Hneědkovský, W Li et al. J. Chem. Eng. Data, 2016, 61(4):1388~1394. doi: 10.1021/acs.jced.5b00535

    5. [5]

      B Krumgalz, R Pogorelskii, K Pitzer. J. Solution Chem., 1995, 24(10):1025~1038. doi: 10.1007/BF00973519

    6. [6]

      B Krumgalz, R Pogorelskii, A Sokolov et al. J. Phys. Chem. Ref. Data, 2000, 29(5):1123~1140. doi: 10.1063/1.1321053

    7. [7]

      G Kell. J. Chem. Eng. Data, 1975, 20(1):97~105. doi: 10.1021/je60064a005

    8. [8]

      X Ma, B Hu, D Gao et al. J. Salt. Lake. Res., 2017, 25(4):23~32.

    9. [9]

      J Lovera, F Hernandez-Luiz, H Galleguillos. J. Chem. Eng. Data, 2008, 53(12):2902~2906. doi: 10.1021/je800638f

    10. [10]

      J Desnoyer, M Arel, G Perron et al. J. Phys. Chem., 1969, 73(10): 3346~3351. doi: 10.1021/j100844a032

  • Figure 1  Density deviations of Pitzer model from experimental data of the Li2SO4-Na2SO4-H2O system

    Figure 2  Density deviations of Pitzer model from experimental data of the Li2SO4-K2SO4-H2O system

    Figure 3  Volumes of mixing of the system of Li2SO4-Na2SO4-H2O, Li2SO4-K2SO4-H2O (top to bottom respectively) at 298K

    Table 1.  Results of experimental measurements of density differences Δρ of Li2SO4-Na2SO4-H2O, Li2SO4-K2SO4-H2O systems with respect to pure water at temperatures Ta

    I/
    (mol·kg-1)
    m2 /
    (mol·kg-1)
    y2 288K
    Δρ/
    (kg·m-3)
    293K
    Δρ/
    (kg·m-3)
    298K
    Δρ/
    (kg·m-3)
    303K
    Δρ/
    (kg·m-3)
    308K
    Δρ/
    (kg·m-3)
    313K
    Δρ/
    (kg·m-3)
    318K
    Δρ/
    (kg·m-3)
    Li2SO4+ Na2SO4 + H2O
    0.1002 0.0069 0.2064 3.459 3.430 3.405 3.386 3.371 3.361 3.355
    0.0999 0.0131 0.3931 3.653 3.622 3.593 3.569 3.552 3.538 3.525
    0.1005 0.0203 0.6059 3.896 3.874 3.840 3.811 3.789 3.771 3.757
    0.1008 0.0266 0.7924 4.116 4.073 4.034 4.002 3.975 3.955 3.936
    0.9993 0.0666 0.1998 32.944 32.678 32.465 31.932 31.932 31.929 31.915
    1.0020 0.1337 0.4004 35.220 34.912 34.652 34.441 34.270 34.136 34.034
    0.9987 0.1998 0.6002 36.831 36.339 35.968 35.662 35.418 35.243 35.181
    0.9993 0.2665 0.8000 38.973 38.513 38.130 37.780 37.483 37.236 37.043
    2.9973 0.1997 0.1999 93.094 92.545 92.086 91.706 91.405 91.168 90.982
    2.9985 0.4000 0.4002 99.094 98.403 97.814 97.323 96.922 96.598 96.341
    3.0003 0.5999 0.5998 104.929 104.293 103.625 103.046 102.556 102.151 101.815
    2.9997 0.8001 0.8002 110.969 110.047 109.258 108.579 108.000 107.507 107.089
    4.4997 0.3000 0.2000 134.613 133.854 133.239 132.749 132.368 132.081 131.876
    4.4994 0.5999 0.4000 142.990 142.127 141.387 140.764 140.232 139.764 139.434
    4.5006 0.9001 0.6000 151.632 150.595 149.708 148.957 148.324 147.794 147.356
    4.4988 1.2000 0.8002 159.250 158.084 157.076 156.203 155.451 154.808 154.258
    Li2SO4 + K2SO4 + H2O
    0.0990 0.0066 0.2008 3.505 3.473 3.451 3.432 3.419 3.411 3.403
    0.1008 0.0133 0.3969 3.869 3.835 3.807 3.785 3.769 3.756 3.747
    0.0987 0.0198 0.6015 4.107 4.069 4.038 4.013 3.993 3.977 3.966
    0.0981 0.0266 0.8141 4.391 4.350 4.315 4.285 4.264 4.245 4.230
    0.9993 0.0665 0.1997 33.772 33.521 33.319 33.158 33.037 32.944 32.880
    0.9999 0.1334 0.4002 36.699 36.421 36.187 35.997 35.846 35.727 35.637
    0.9633 0.2009 0.6258 38.602 38.296 38.036 37.819 37.641 37.497 37.382
    0.9999 0.2667 0.8002 42.521 42.167 41.870 41.619 41.411 41.237 41.096
    1.9992 0.1334 0.2002 65.480 65.044 64.691 64.411 64.197 64.036 63.925
    1.9998 0.2666 0.4000 70.886 70.416 70.011 69.678 69.415 69.211 69.054
    1.9992 0.4002 0.6005 76.634 76.088 75.630 75.245 74.929 74.673 74.468
    1.9998 0.5334 0.8001 82.065 81.462 80.943 80.506 80.141 79.835 79.584
    2.5002 0.1666 0.1999 80.554 80.041 79.632 79.308 79.058 78.873 78.742
    2.5005 0.3333 0.3998 87.480 86.922 86.450 86.064 85.755 85.513 85.329
    2.4999 0.5003 0.6004 94.105 93.468 92.928 92.479 92.110 91.808 91.568
      a Standard uncertainties u are u(T)=0.002K, u(p)=1kPa, uρ)=0.005kg·m-3, u(m)=0.0007 for Li2SO4, u(m)=0.0008 for Na2SO4 and u(m)=0.0006 for K2SO4.
    下载: 导出CSV

    Table 2.  Volumetric Pitzer parameters at different temperatures

    T/K 288 293 298 303 308 313 318
    Li2SO4
    VMX0 (cm3·mol-1) 11.4165 11.9965 12.4500 12.7278 12.8233 12.8062 12.6779
    β(0)V×105 (kg·mol-1·bar-1) 3.5477 3.0314 2.7393 2.4674 2.2393 2.0745 1.9358
    β(1)V×105 (kg·mol-1·bar-1) -5.1539 -5.8359 -7.6886 -9.1991 -10.4017 -11.8396 -13.2710
    CV×106 (kg2·mol-2·bar-1) -1.4645 -1.0967 -0.9517 -0.7997 -0.6785 -0.6111 -0.5573
    Na2SO4
    VMX0 (cm3·mol-1) 9.0503 10.5253 11.7760 12.8156 13.6574 14.3148 14.8011
    β(0)V×105 (kg·mol-1·bar-1) 7.0225 6.0169 5.3250 4.9123 4.7440 4.7855 5.0021
    β(1)V×105 (kg·mol-1·bar-1) 1.6858 1.5150 1.2932 1.0048 0.6616 0.2750 -0.1432
    CV×106(kg2·mol-2·bar-1) -5.0204 -3.7013 -2.9140 -2.6031 -2.7133 -3.1892 -3.9757
    K2SO4
    VMX0 (cm3·mol-1) 29.8538 31.1524 32.2300 33.1017 33.7818 34.2839 34.6209
    β(0)V×105 (kg·mol-1·bar-1) -1.0017 -0.3727 0.1105 0.4618 0.6948 0.8237 0.8621
    β(1)V×105 (kg·mol-1·bar-1) 6.2864 4.2352 2.6016 1.3484 0.4381 -0.1667 -0.5034
    CV×106 (kg2·mol-2·bar-1) 7.4103 4.1365 1.6192 -0.2184 -1.4529 -2.1609 -2.4191
    下载: 导出CSV

    Table 3.  Mixing parameters at different temperatures

    T/K θLiNaV×105 ψLiNaSO4V×105 SD1 θLiKV×105 ψLiKSO4V×105 SD2
    288 5.9102 -4.4308 0.00053 0.2357 -3.5767 0.00052
    0 0 0.0016 0 0 0.00056
    293 5.6107 -4.0375 0.00054 0.1059 0.4394 0.00047
    0 0 0.0016 0 0 0.00047
    298 5.6499 -4.0734 0.00061 0.1671 3.2257 0.00043
    0 0 0.0017 0 0 0.00050
    303 5.8949 -4.3481 0.00066 0.2701 5.1669 0.00041
    0 0 0.0017 0 0 0.00071
    308 5.9826 -4.3635 0.00068 0.4085 6.3911 0.00040
    0 0 0.0013 0 0 0.00066
    313 6.0911 -4.3638 0.00071 0.6312 6.8783 0.00040
    0 0 0.0019 0 0 0.00073
    318 6.2433 -4.4104 0.00073 0.9087 6.7930 0.00041
    0 0 0.0020 0 0 0.00078
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  3
  • 文章访问数:  627
  • HTML全文浏览量:  96
文章相关
  • 发布日期:  2018-10-18
  • 收稿日期:  2018-05-25
  • 接受日期:  2018-07-30
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章