Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes

Wencheng Yang Xiaoxu Qi Pinhong Chen Guosheng Liu

Citation:  Yang Wencheng, Qi Xiaoxu, Chen Pinhong, Liu Guosheng. Palladium-Catalyzed Intramolecular Fluoroarylation of Alkenes[J]. Chinese Journal of Organic Chemistry, 2019, 39(1): 122-128. doi: 10.6023/cjoc201810026 shu

钯催化烯烃的分子内氟芳基化反应

    通讯作者: 陈品红, pinhongchen@sioc.ac.cn
    刘国生, gliu@mail.sioc.ac.cn
  • 基金项目:

    国家重点基础研究发展计划(973计划,No.2015CB856600)、国家自然科学基金(Nos.21532009,21672236,21761142010,21790330)、上海市科学技术委员会(Nos.17QA1405200和17JC1401200)、中国科学院(Nos.XDB20000000,QYZDJSSW-SLH055)和青年创新促进会(No.2018292)资助项目

    上海市科学技术委员会 17QA1405200

    国家自然科学基金 21790330

    国家自然科学基金 21532009

    国家自然科学基金 21672236

    上海市科学技术委员会 17JC1401200

    中国科学院 QYZDJSSW-SLH055

    中国科学院 XDB20000000

    青年创新促进会 2018292

    国家自然科学基金 21761142010

    国家重点基础研究发展计划(973计划) 2015CB856600

摘要: 发展了一种钯催化的烯烃分子内氟芳基化反应,以ArIF2作为氟源和亲电试剂来活化烯烃,实现了4-芳基-1-丁烯的氟化关环反应,以中等到良好的收率得到氟芳基化产物.这类反应为从烯基芳烃出发合成氟代四氢萘和氟代色满提供了高效方法.

English

  • Fluorine-containing molecules are of great interest in the pharmaceutical, agrochemical and materials.[1] Despite the widespread distribution of fluorine in nature, the natural fluorinated organic molecules are very rare. Thus, the development of new efficient methods for the selective fluorination of organic compounds has received increasing attention in the past few years.[2] Among them, the fluorination of alkenes, such as aminofluorination, oxyfluorination and carbofluorination, represents one of the most efficient ways to synthesize various alkyl fluorides, which have been well studied in recent decades.[3] In contrast, few reports on the fluoroarylation of alkenes have been disclosed.[7~9]

    In 2014, Toste et al.[7] developed a palladium-catalyzed intermolecular fluoroarylation of styrenes using aryl boronic acids as aryl source, in which the amide-based directing groups are essential to stabilize alkyl-palladium intermediate (Scheme 1a). Later, an elegant Pd-catalyzed 1, 1-fluoroarylation of unactivated alkenes was also reported by the same group, where this reaction proceeded through an oxidative Heck type mechanism involving β-hydride elimination, reinsertion and oxidative fluorination.[7] Meanwhile, Loh and Feng et al.[8] reported a palladium-catalyzed fluoroarylation of gem-difluoroalkenes to afford the 1, 1, 1-trifluoro-2-arylalkanes using aryl iodides as aryl source (Scheme 1b). With radical process, Tang and coworkers reported a silver-catalyzed Meerwein fluoroarylation of styrenes using aryl diazonium salts as aryl sources (Scheme 1c).[9] In these reactions, prefunctionalized aryl reagents were required; arguably, fluoroarylation of alkenes through C―H functionalization of simple arenes should be the privileged strategy (Scheme 1d). Herein, we described a novel palladium-catalyzed intramolecular fluoroarylation of alkenes with ArIF2 as the fluorine source, in which the arene tethered with alkenes was used as aryl source. This method provided a convenient protocol for the synthesis of fluorinated tetraline derivatives.

    Scheme 1

    Scheme 1.  Transition metal-catalyzed fluoroarylation of alkenes.

    As our continuous research interest in difunctionalization of alkenes, [10] recently we have developed the inter-molecular oxy-, azido- and fluoro-carbonylation reactions of unactivated alkenes under CO atmosphere, using various hypervalent iodine reagents, such as PhI(OAc)2, ArI(N3) and ArIF2, which afforded a serial of β-functionalized carboxylic acid derivatives.[11] For example, treatment of 4-phenyl-1-buytene by ArIF2 and PdCl2 under CO atmosphere afforded the desired fluorocarbonylation product in good yield. Further mechanistic study revealed that the reaction was initiated from an iodonium species, followed by a nucleophilic ring-opening by palladium catalyst and CO insertion. However, the control experiments revealed that the fluorinated tetraline was observed in the absence of CO (Scheme 2), which was a core structure in the medicinal and bioactive compounds.[12] So far, there is no efficient method for the access to these compounds.[13] Thus the fluoroarylation of alkenes aroused our great interest.

    Scheme 2

    Scheme 2.  Pd-catalyzed fluorination of alkenes

    With above observation, further optimizing reaction conditions were surveyed. The reaction of 1a was initially tested by using PdCl2 catalyst and ArIF2 to give the 2-fluorotetralin (2a) in 26% yield (Table 1, Entry 1). Further screening of palladium catalysts revealed that Pd(Ph-CN)2Cl2 was the best catalyst to give the product 2a in 42% yield (Table 1, Entries 1~3). Addition of tetrahydrofuran (THF) was slightly helpful to the yield (Entry 4). Later, the yield was further improved to 60% by adding 5 Å molecular sieves and lowering down the temperature to 0 ℃ (Entries 5, 6), which is possibly to stabilize ArIF2. In our previous report, Lewis acid such as BF3•OEt2 was required to activate PhI(OAc)2, thus producing the cationic PhI(OAc)+ species which reacts with the alkene to form the three-membered iodonium ion intermediate.[14] Thus, both Lewis and Bronsted acids were screened, and tris(penta-fluorophenyl)borate [B(C6F5)3] gave the best result to afford 2a in 76% NMR yield and 70% isolated yield (Entries 7~10). Control experiments showed that no reaction occurred in the absence of palladium catalyst (Entry 11). Meanwhile, absence of Lewis acid significantly decreased the yield of prodcuct 2a to 15% yield (Entry 12), highlighting the important role of Lewis acid. Other transition metal salts were also surveyed, but CuCl2 and AlCl3 could not catalyze this reaction and only small amount of desired product 2a was detected in the cases of NiCl2 and PtCl2 (Entries 13~16).

    Table 1

    Table 1.  Optimization of the reaction conditiona
    下载: 导出CSV
    Entry Cat. Additive Solvent (V:V) Yieldb/%
    1 PdCl2 BF3•Et2O MeCN 26
    2 Pd(CH3CN)2Cl2 BF3•Et2O MeCN 37
    3 Pd(PhCN)2Cl2 BF3•Et2O MeCN 42
    4 Pd(PhCN)2Cl2 BF3•Et2O MeCN/THF (9:1) 48
    5c Pd(PhCN)2Cl2 BF3•Et2O MeCN/THF (9:1) 53
    6c, d Pd(PhCN)2Cl2 BF3•Et2O MeCN/THF (9:1) 60
    7c, d Pd(PhCN)2Cl2 BPh3 MeCN/THF (9:1) 0
    8c, d Pd(PhCN)2Cl2 B(C6F5)3 MeCN/THF (9:1) 76 (70)e
    9c, d Pd(PhCN)2Cl2 TsOH MeCN/THF (9:1) 15
    10c, d Pd(PhCN)2Cl2 TfOH MeCN/THF (9:1) 23
    11c, d B(C6F5)3 MeCN/THF (9:1) 0
    12c, d Pd(PhCN)2Cl2 MeCN/THF (9:1) 15
    13c, d CuCl2 B(C6F5)3 MeCN/THF (9:1) 0
    14c, d AlCl3 B(C6F5)3 MeCN/THF (9:1) 0
    15c, d NiCl2 B(C6F5)3 MeCN/THF (9:1) 16
    16c, d PtCl2 B(C6F5)3 MeCN/THF (9:1) 24
    a All reactions were run at 0.2 mmol scale with ArIF2 (5 equiv). b Yields were obtained by 1H NMR with CH3NO2 as an internal standard. c Addition of 5 Å molecular sieves (25 mg). d 0 ℃. e Isolated yield indicated in parentheses.

    With the optimized reaction conditions in hand, we turned our attention to examine the substrate scope of alkenes. As shown in Table 2, various substrates with substituted arenes were tested. However, the reactions afforded the six-membered products 2 and 3, where the regioisomers located in the aryl ring. For instance, substrates bearing neutral or electron-rich arenes (1b~1d) gave a mixture of 2b~2d and 3b~3d in good yields, but low regioselectivities (1.1~1.4:1) (Entries 2~4). The methyl group located in different position of phenyl (1b~1c) didn't exhibit significant effect on the yields. The reaction of substrate 1e also smoothly proceeded to give fluoroarylation product 2e and 3e in 70% yield with 1.6:1 regioselectivity (Entry 5). Moreover, substrates bearing para-halogenated arenes 1f~1h were also suitable for the reaction to give the desired products 2f~2h and 3f~3h in moderate yields with 1~1.5:1 ratio (Entries 6~8). Interestingly, when substrate 1i bears an electron-deficient arene with CF3 group in para position, the reaction exhibited excellent selectivity to afford the desired product 2i as a single product, albeit in slightly low yield (34%, Entry 9). Furthermore, the reaction of but-3-ene-1, 1-diyl-dibenzene (1j) also exhibited excellent reactivity to generate single product 2j with excellent diastereoselectivity ratio (Entry 10). The reaction was not limited to butenyl arenes substrates, phenylallyl ethers 1k and 1l were proven to be good substrates, and the reaction furnished the fluoroarylation products 2k and 2l in moderate to good yields (Entries 11, 12). Notably, the reaction of 1l preformed excellent selectivity, and only single product 2l was observed (Entry 12).

    Table 2

    Table 2.  Substrate scope for intramolecular fluoroarylationa
    下载: 导出CSV

    As similar to our previous reports, [11] both Lewis acid and palladium catalyst were required to the current reaction. Thus we propose that the reaction is initiated by the same iodonium intermediate int.Ⅰ, in which Lewis acid [B(C6F5)3] plays an important role to activate ArIF2 (Scheme 3, path a). After that, the reaction is followed by the ring-opening of iodonium int.Ⅰ with nucleophilic attack by Pd(Ⅱ) species to generate the key palladium(Ⅳ) intermediate int.Ⅱ.

    Scheme 3

    Scheme 3.  Plausible reaction mechanism

    As mentioned in above, the reactions afforded the mixture of isomers 2 and 3 (Table 2). It suggests that a key intermediate int-Ⅲ is possibly involved, and this species could be formed through an intramolecular electrophilic arylation of int-Ⅱ owing to the good leaving property of Pd(Ⅳ). The arenium ion int.Ⅲ undergoes C―C bond migration and deprotonation to afford intermediate int.Ⅳ, in which the nonselective migration results in two regioisomers in the cases of substrates with substituted arenes.[15] Finally, nucleophilic fluorination of int.Ⅳ generates the desired product 2 and 3. This pathway is consistent with the substrate scope in Table 2, in which electron-rich arenes exhibit good reactivity.

    Alternatively, another possible mechanism involves a fluoropalladation pathway (path b), where the generated fluoroalkyl-Pd(Ⅱ) species int.Ⅴ could be further oxidized to give Pd(Ⅳ) species int.Ⅵ. With the following electrophilic arylation at Pd(Ⅳ) center, the migration of int.Ⅶ affords the final product. This pathway can not be ruled out at this stage, however, only fluoropalladation of styrenes was achieved in our previous studies, and unactivated alkenes was not successful.[16]

    In summary, we developed a novel palladium-catalyzed intramolecular fluoroarylation of alkenes, in which ArIF2 was employed as fluorine source as well as electrophilic reagent to activate olefin, which delivered the fluoroarylation products in moderate to good yields. It is notable that the arenes tethered with double bond was used as aryl source. The current method presents an efficient approach for the synthesis of fluorinated tetraline, but with poor regioselectivities.

    PdCl2 was purchased from Strem Chemical, other commercial reagents with high purity were purchased and used without further purification, unless otherwise noted. Reactions were monitored by thin-layer chromatography (TLC) carried out on 25 mm silica gel plates. 1H NMR, 19F NMR and 13C NMR spectra were recorded on an agilent-400 MHz spectrometer. The chemical shifts (δ) are given in parts per million relative to internal standard TMS (0 for 1H), CDCl3 (77.0 for 13C). Flash column chromatography was performed on silica gel (particle size 200~300 mesh, purchased from Canada) and eluted with petroleum ether/ethyl acetate. Acetonitrile and tetrahydrofuran were directly obtained from solvent purification system of Innovation Technology Company. Substrates 1a~1i, [15] 1j, [17] 1k[18] and 1l[19] were prepared according to the literatures.

    In an oven-dried Schlenk tube (10 mL), Pd(PhCN)2Cl2 (7.6 mg, 0.02 mmol), ArIF2 (270 mg, 1.0 mmol) and 5 Å molecular sieves (25 mg) were dissolved in a mixture solvent of CH3CN and THF (1.0 mL, V:V=9:1), then B(C6F5)3 (30.7 mg, 0.06 mmol) and alkene substrate 1 (0.2 mmol) were added at 0 ℃. The mixture was stirred at 0 ℃ for 24 h. Then the organic solvent was removed under vacuum, and the residue was diluted by EtOAc (4.0 mL) and filtrated through a short pad of silica gel. The filtrate was concentrated under vacuum, and the crude residue was purified by column chromatography on silica gel with a gradient eluant of petroleum ether and ethyl acetate to give a mixture of products 2 and 3.

    2-Fluoro-1, 2, 3, 4-tetrahydronaphthalene (2a)[13]: Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.15~7.07 (m, 4H), 5.14~5.01 (dm, J=47.6 Hz, 1H), 3.18~2.97 (m, 3H), 2.81 (dt, J=16.8, 6.4 Hz, 1H), 2.14~1.98 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 135.4 (d, J=1.6 Hz), 132.9 (d, J=6.0 Hz), 129.4, 128.5, 126.1, 126.0, 88.7 (d, J=169.0 Hz), 35.3 (d, J=22.0 Hz), 28.5 (d, J=19.7 Hz), 25.5 (d, J=8.9 Hz); 19F NMR (376 MHz, CDCl3) δ: -177.4~-177.7 (m).

    2-Fluoro-7-methyl-1, 2, 3, 4-tetrahydronaphthalene (2b) and 2-fluoro-6-methyl-1, 2, 3, 4-tetrahydronaphthalene (3b): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.05~6.93 (m, 3H), 5.14~5.00 (dm, J=49.2 Hz, 1H), 3.16~2.95 (m, 3H), 2.81~2.74 (m, 1H), 2.35~2.31 (m, 3H), 2.12~2.02 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: major: 135.6, 135.2 (d, J=1.6 Hz), 129.8 (d, J=6.2 Hz), 129.3, 129.1, 126.9. 89.0 (d, J=167.9 Hz), 34.9 (d, J=22.3 Hz). 28.5 (d, J=20.1 Hz), 25.6 (d, J=8.9 Hz), 20.9; minor: 135.5, 132.3 (d, J=1.5 Hz), 132.7 (d, J=6.2 Hz), 129.9, 128.4, 127.0, 88.9 (d, J=169.1 Hz), 35.0 (d, J=22.2 Hz), 28.6 (d, J=19.8 Hz), 25.2 (d, J=8.3 Hz), 20.9; 19F NMR (376 MHz, CDCl3) δ: 177.30~-177.61 (m). HRMS-EI calcd for C11H13F [M•+] 164.1001, found 164.0998.

    2-Fluoro-5-methyl-1, 2, 3, 4-tetrahydronaphthalene (2c) and 2-fluoro-8-methyl-1, 2, 3, 4-tetrahydronaphthalene (3c): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.15~6.95 (m, 3H), 5.19~4.96 (m, 1H), 3.17~2.64 (m, 4H), 2.40~1.92 (m, 5H); 13C NMR (100 MHz, CDCl3) δ: major: 136.2, 133.8, 132.7 (d, J=6.2 Hz), 128.4, 127.7, 127.2, 125.9, 88.6 (d, J=168.5 Hz), 35.8 (d, J=21.8 Hz), 28.5 (d, J=21.6 Hz), 23.3 (d, J=8.2 Hz), 19.6; minor: 136.8, 135.3, 131.6 (d, J=5.9 Hz), 127.5, 126.3, 125.8, 89.2 (d, J=168.0 Hz), 33.0 (d, J=22.6 Hz), 28.1 (d, J=19.9 Hz), 25.9 (d, J=7.8 Hz), 19.5; 19F NMR (376 MHz, CDCl3) δ: major: -178.5~-178.9 (m); minor: -175.6~-175.9 (m). HRMS-EI calcd for C11H13F [M•+] 164.1001, found 164.1004.

    7-(tert-Butyl)-2-fluoro-1, 2, 3, 4-tetrahydronaphthalene (2d) and 6-(tert-butyl)-2-fluoro-1, 2, 3, 4-tetrahydrona-phthalene (3d): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.21~7.19 (m, 1H), 7.14~7.12 (m, 1H), 7.08~7.04 (m, 1H), 5.17~5.04 (dm, J=50.0 Hz 1H), 3.22~2.98 (m, 3H), 2.87~2.77 (m, 1H), 2.19~2.07 (m, 2H), 1.52~1.34 (m, 9H); 13C NMR (100 MHz, CDCl3) δ: major: 149.1, 132.4, 129.9 (d, J=6.5 Hz), 129.1, 125.3, 123.2, 89.0 (d, J=169.9 Hz), 34.9 (d, J=22.2 Hz), 31.3, 29.8, 28.6 (d, J=20.2 Hz), 25.9 (d, J=8.4 Hz); minor: 149.0, 134.8, 132.4, 129.9 (d, J=6.5 Hz), 128.2, 126.1, 123.3, 89.0 (d, J=169.9 Hz), 35.6 (d, J=22.0 Hz), 31.3, 29.6, 28.6 (d, J=20.2 Hz), 25.2 (d, J=8.7 Hz); 19F NMR (376 MHz, CDCl3) δ: -177.0~-177.8 (m). HRMS-EI calcd for C14H19F [M•+] 206.1471, found 206.1474.

    2-Fluoro-7-phenyl-1, 2, 3, 4-tetrahydronaphthalene (2e) and 2-fluoro-6-phenyl-1, 2, 3, 4-tetrahydronaphthalene (3e): White solid, m.p. 36~37 ℃. 1H NMR (400 MHz, CDCl3) δ: 7.63 (d, J=8.4 Hz, 2H), 7.48 (t, J=7.6 Hz, 2H), 7.43 (d, J=7.6 Hz, 1H), 7.40~7.37 (m, 2H), 7.29~7.06 (m, 2H), 5.30~4.98 (dm, J=49.6 Hz, 1H), 3.30~3.06 (m, 3H), 2.95~2.85 (m, 1H), 2.26~2.06 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: major: 141.0, 139.2, 135.8, 133.3 (d, J=5.8 Hz), 129.8, 128.7, 128.0, 127.1, 127.0, 124.9, 88.7 (d, J=169.1 Hz), 35.0 (d, J=22.2 Hz), 28.4 (d, J=20.0 Hz), 25.6 (d, J=8.3 Hz); minor: 140.9, 139.1, 134.6, 132.0 (d, J=5.9 Hz), 129.0, 128.9, 128.0, 127.2, 126.9, 125.0, 88.7 (d, J=169.1 Hz), 35.4 (d, J=22.2 Hz), 28.4 (d, J=20.0 Hz), 25.1 (d, J=8.5 Hz); 19F NMR (376 MHz, CDCl3) δ: -177.7~-178.2 (m). HRMS-EI calcd for C16H15F4 [M•+] 226.1158, found 226.1162.

    2, 7-Difluoro-1, 2, 3, 4-tetrahydronaphthalene (2f) and 2, 6-difluoro-1, 2, 3, 4-tetrahydronaphthalene (3f): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.08~7.02 (m, 1H), 6.85~6.79 (m, 2H), 5.16~5.01 (dm, J=49.6 Hz, 1H), 3.11~2.92 (m, 3H), 2.81~2.73 (m, 1H), 2.15~1.95 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: major: 160.2 (d, J=241.4 Hz), 137.4 (dd, J=8.5, 1.8 Hz), 130.6 (d, J=8.2 Hz), 128.3 (dd, J=5.4, 2.2 Hz), 114.8 (d, J=20.9 Hz), 113.1 (d, J=20.8 Hz), 88.4 (d, J=169.1 Hz), 34.7 (d, J=23.2 Hz), 28.0 (d, J=20.3 Hz), 23.5 (d, J=7.9 Hz); minor: 160.1 (d, J=241.9 Hz), 134.7 (dd, J=8.5, 5.5 Hz), 130.9 (dd, J=3.1, 1.8 Hz), 129.9 (d, J=8.0 Hz), 115.4 (d, J=20.9 Hz), 113.2 (d, J=21.6 Hz), 88.1 (d, J=169.4 Hz), 35.2 (dd, J=22.8, 1.6 Hz), 28.3 (d, J=20.1 Hz), 25.4 (dd, J=8.3, 1.7 Hz); 19F NMR (376 MHz, CDCl3) δ: major: -117.3 (q, J=8.7 Hz), -178.3~-178.8 (m); minor: -117.5 (q, J=8.7 Hz), -178.3~-178.8 (m). HRMS-EI calcd for C10H10F2 [M•+] 168.0751, found 168.0749.

    7-Chloro-2-fluoro-1, 2, 3, 4-tetrahydronaphthalene (2g) and 6-chloro-2-fluoro-1, 2, 3, 4-tetrahydronaphthalene (3g): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.11~7.08 (m, 2H), 7.03~7.00 (m, 1H), 5.14~5.00 (dm, J=49.6 Hz, 1H), 3.12~2.91 (m, 3H), 2.79~2.72 (m, 1H), 2.18~1.95 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: major: 137.2, 131.9 (d, J=13.5 Hz), 131.2 (d, J=4.6 Hz), 130.6, 128.0, 126.1, 88.2 (d, J=169.6 Hz), 34.6 (d, J=22.1 Hz), 27.9 (d, J=20.7 Hz), 25.1 (d, J=7.4 Hz); minor: 134.6 (d, J=4.8 Hz), 133.9, 131.9 (d, J=13.5 Hz), 129.8, 129.0, 126.2, 88.0 (d, J=169.2 Hz), 34.9 (d, J=22.9 Hz), 28.1 (d, J=19.7 Hz), 24.6 (d, J=7.8 Hz); 19F NMR (376 MHz, CDCl3) δ: -178.4~-178.9 (m). HRMS-EI calcd for C10H10FCl [M•+] 184.0455, found 184.0456.

    7-Bromo-2-fluoro-1, 2, 3, 4-tetrahydronaphthalene (2h) and 6-bromo-2-fluoro-1, 2, 3, 4-tetrahydronaphthalene (3h): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.26~7.24 (m, 2H), 6.96~6.95 (m, 1H), 5.14~5.00 (dm, J=49.6 Hz, 1H), 3.13~2.91 (m, 3H), 2.78~2.69 (m, 1H), 2.15~2.94 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: major: 135.1 (d, J=4.9 Hz), 134.4, 131.2, 130.9, 129.1, 119.6, 88.0 (d, J=169.1 Hz), 34.6 (d, J=23.0 Hz), 28.0 (d, J=20.3 Hz), 25.0 (d, J=7.5 Hz); minor: 137.8, 131.9, 131.7 (d, J=5.5 Hz), 130.1, 129.0, 119.4, 87.9 (d, J=169.7 Hz), 34.8 (d, J=21.9 Hz), 27.9 (d, J=19.9 Hz), 24.8 (d, J=7.6 Hz); 19F NMR (376 MHz, CDCl3) δ: -178. 4~-179.0 (m). HRMS-EI calcd for C10H10FBr [M•+] 227.9950, found 227.9956.

    2-Fluoro-7-(trifluoromethyl)-1, 2, 3, 4-tetrahydronaphthalene (2i): Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.38 (d, J=8.4 Hz, 1H), 7.35 (s, 1H), 7.21 (d, J=7.6 Hz, 1H), 5.13 (dm, J=49.6 Hz, 1H), 3.15 (dd, J=9.2, 4.0 Hz, 1H), 3.09 (d, J=3.6 Hz, 1H), 3.03 (t, J=8.4 Hz, 1H), 2.87~2.80 (m, 1H), 2.26~1.83 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 139.6, 133.5 (d, J=5.0 Hz), 129.0, 128.6, 126.9 (d, J=271.6 Hz), 126.2 (q, J=3.8 Hz), 122.8 (q, J=4.0 Hz), 87.8 (d, J=169.3 Hz), 35.0 (d, J=22.4 Hz), 27.9 (d, J=20.5 Hz), 25.1 (d, J=8.1 Hz); 19F NMR (376 MHz, CDCl3) δ: -62.0 (s), -178.7~-179.0 (m). HRMS-EI calcd for C11H10F4 [M•+] 218.0719, found 218.0713.

    3-Fluoro-1-phenyl-1, 2, 3, 4-tetrahydronaphthalene (2j): White solid, m.p. 38~38 ℃. 1H NMR (400 MHz, CDCl3) δ: 7.30 (t, J=7.6 Hz, 1H), 7.25~7.23 (m, 1H), 7.15~7.12 (m, 4H), 7.10~7.05 (m, 1H), 6.84 (d, J=7.6 Hz, 1H), 5.23~5-09 (dm, J=49.6 Hz, 1H), 4.35 (dd, J=8.8, 6.0 Hz, 1H), 3.30~3.09 (m, 2H), 2.49~2.41 (m, 1H), 2.18~2.04 (dd, J=33.6, 10.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ: 145.7, 138.3, 133.0 (d, J=3.6 Hz), 129.4, 129.2, 128.7, 128.5, 126.4, 126.2, 87.3 (d, J=165.6 Hz), 41.7 (d, J=6.3 Hz), 37.6 (d, J=19.7 Hz), 35.4 (d, J=22.4 Hz); 19F NMR (376 MHz, CDCl3) δ: -180.7~-181.2 (m). HRMS-EI calcd for C16H15F [M•+] 226.1158, found 226.1163.

    3-Fluorochromane (2k)[20]: Colorless oil. 1H NMR (400 MHz, CDCl3) δ: 7.26~6.78 (m, 4H), 5.18~5.03 (dm, J=47.6 Hz, 1H), 4.40~4.32 (m, 1H), 4.17~4.03 (m, 1H), 3.17~3.02 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 153.5, 130.0, 127.82, 121.2, 118.1, 116.7, 84.15 (d, J=174.1 Hz), 66.9 (d, J=21.9 Hz), 30.6 (d, J=21.9 Hz); 19F NMR (376 MHz, CDCl3) δ: -186.9~-187.3 (m). HRMS-EI calcd for C9H9OF [M•+] 152.0637, found 152.0635.

    3-Fluoro-6-phenylchromane (2l): White solid. m.p. 38~38 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.54 (d, J=7.6 Hz, 2H), 7.44~7.37 (m, 3H), 7.34~7.31 (m, 2H), 6.95 (dd, J=8.4, 1.2 Hz, 1H), 5.21~5.09 (dm, J=47.6 Hz, 1H), 4.43~4.38 (m, 1H), 4.15 (dd, J=31.2, 12.0 Hz, 1H), 3.27~3.12 (m, 2H); 13C NMR (100 MHz, CDCl3) δ: 153.1, 140.6, 134.4, 128.7, 128.6, 126.8, 126.7, 126.6, 118.3, 117.0, 84.1 (d, J=175.0 Hz), 67.0 (d, J=21.1 Hz), 30.7 (d, J=23.0 Hz); 19F NMR (376 MHz, CDCl3) δ: -186.9~-187.3 (m). HRMS-EI calcd for C15H13OF [M•+] 228.0950, found 228.0954.

    Supporting Information    1H NMR, 13C NMR and 19F NMR spectra for products 2/3a~2/3l. The Supporting Information is available free of charge via the Internet at http://sioc-journal.cn/.

    1. [1]

      (a) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (b) Wang, J.; Sánchez-Rosellyó, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.
      (c) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Aceña, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    2. [2]

      For reviews, see:
      (a) Cahard, D.; Xu, X.; Couve-Bonnaire, S.; Pannecoucke, X. Chem. Soc. Rev. 2010, 39, 558.
      (b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160.
      (c) Liu, G. Org. Biomol. Chem. 2012, 6243.
      (d) Wolstenhulme, J. R.; Gouverneur, V. Acc. Chem. Res. 2014, 47, 3560.
      (e) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214.
      (f) Campbell, M. G.; Ritter, T. Chem. Rev. 2015, 115, 612.

    3. [3]

      For the selected examples on aminofluorination, see:
      (a) Wu. T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
      (b) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y. Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
      (c) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem., Int. Ed. 2013, 52, 2469.
      (d) Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. 2013, 135, 4640.
      (e) Huang, H.-T.; Lacy, T. C.; Blachut, B.; Ortiz Jr, G. X.; Wang, Q. Org. Lett. 2013, 15, 1818.
      (f) Li, Z.; Zhang, C.; Zhu, L.; Liu, C.; Li, C. Org. Chem. Front. 2014, 1, 100.
      (g) Zhang, H.; Song, Y.; Zhao, J.; Zhang, J.; Zhang, Q. Angew. Chem., Int. Ed. 2014, 53, 11079.
      (h) Cui, J.; Jia, Q.; Feng, R.-Z.; Liu, S.-S.; He, T.; Zhang, C. Org. Lett. 2014, 16, 1442.
      (i) Lu, D.-F.; Liu, G.-S.; Zhu, C.-L.; Yuan, B.; Xu, H. Org. Lett. 2014, 16, 2912.
      (j) Yuan, W.; Szabo, K. J. Angew. Chem. Int. Ed. 2015, 54, 8533.
      (k) Lu, D.-F.; Zhu, C.-L.; Sears, J. D.; Xu, H. J. Am. Chem. Soc. 2016, 138, 11360.

    4. [4]

      For selected examples on oxyfluorination, see:
      (a) Wilkinson, S. C.; Lozano, O.; Schuler, M.; Pacheco, M. C.; Salmon, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 7083.
      (b) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.
      (c) Peng, H.; Yuan, Z.; Wang, H.-Y., Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.
      (d) Egami, H.; Asada, J.; Sato, K.; Hashizume, D.; Kawato, Y.; Hamashima, Y. J. Am. Chem. Soc. 2015, 137, 10132.
      (e) Geary, G. C.; Hope, E. G.; Stuart, A. M. Angew. Chem., Int. Ed. 2015, 54, 14911.

    5. [5]

      For selected examples on carbofluorination, see:
      (a) Cochrane, N. A.; Nguyen, H.; Gagne, M. R. J. Am. Chem. Soc. 2013, 135, 628.
      (b) Zhu, L.; Chen, H.; Wang Z.; Li, C. Org. Chem. Front. 2014, 1, 1299.
      (c) Wang, H.; Guo, L.-N.; Duan, X.-H. Chem. Commun. 2014, 50, 7382.
      (d) Liu, Z.; Chen, H.; Lv, Y.; Tan, X.; Shen, H.; Yu, H.-Z.; Li, C. J. Am. Chem. Soc. 2018, 140, 6169.

    6. [6]

      Other fluorination of alkenes, see:
      (a) Barker, T. J.; Boger, D. L. J. Am. Chem. Soc. 2012, 134, 13588.
      (b) Zhang, C.; Li, Z.; Zhu, L.; Yu, L.; Wang, Z.; Li, C. J. Am. Chem. Soc. 2013, 135, 14082.
      (c) Emer, E.; Pfeifer, L.; Brown, J. M.; Gouverneur, V. Angew. Chem., Int. Ed. 2014, 53, 4181.
      (d) Yuan, Z.; Wang, H.-Y.; Mu, X.; Chen, P.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2015, 137, 2468.
      (e) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
      (f) Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
      (g) Banik, S. M.; Medley, J. M.; Jacobsen, E. N. Science 2016, 353, 51.
      (h) Woerly, E. M.; Banik, S. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 13858.

    7. [7]

      (a) Talbot, E. P. A.; Fernandes, T. A.; McKenna, J. M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 4101.
      (b) He, Y.; Yang, Z.; Thornbury, R. T.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 12207.
      (c) Miró, J.; de Pozo, C.; Toste, F. D.; Fustero, S. Angew. Chem., Int. Ed. 2016, 55, 9045.
      (d) Thornbury, R. T.; Saini, V.; Fernandes, T. A.; Santiago, C. B.; Talbot, E. P. A.; Sigman, M. S.; McKenna, J. M.; Toste, F. D. Chem. Sci. 2017, 8, 2890.

    8. [8]

      Tang, H.-J.; Lin, L.-Z.; Feng, C.; Loh, T.-P. Angew. Chem., Int. Ed. 2017, 56, 9872. doi: 10.1002/anie.201705321

    9. [9]

      (a) Guo, R.; Yang, H.; Tang, P. Chem. Commun. 2015, 51, 8829.
      (b) Kindt, S.; Heinrich, M. R. Chem. Eur. J. 2014, 20, 15344.

    10. [10]

      Yin, G.; Mu, X.; Liu, G. Acc. Chem. Res. 2016, 49, 2413. doi: 10.1021/acs.accounts.6b00328

    11. [11]

      (a) Li, M.; Yu, F.; Qi, X.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2016, 55, 13843.
      (b) Li, M.; Yu, F.; Chen, P.; Liu, G. J. Org. Chem. 2017, 82, 11682.
      (c) Qi, X.; Yu, F.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 12692.

    12. [12]

      (a) Taniguchi, K.; Nagano, M.; Hattori, K.; Tsubaki, K.; Okitsu, O.; Tabuchi, S. US 5763489, 1998.
      (b) Poirier, D. Anticancer Agents Med. Chem. 2009, 9, 642.

    13. [13]

      Ventre, S.; Petronijevic, F. R.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 137, 5654. doi: 10.1021/jacs.5b02244

    14. [14]

      (a) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658.
      (b) Izquierdo, S.; Essafi, S.; del Rosal, I.; Vidossich, P.; Pleixats, R.; Vallribera, A.; Ujaque, G.; Lledós, A.; Shafir, A. J. Am. Chem. Soc. 2016, 138, 12747.

    15. [15]

      Liu, R.; Lu, Z.-H.; Hu, X.-H.; Li, J.-L.; Yang, X.-J. Org. Lett. 2015, 17, 1489. doi: 10.1021/acs.orglett.5b00376

    16. [16]

      (a) Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.-L.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
      (b) Peng, H.; Yuan, Z.; Wang, H.-Y.; Guo, Y.-L.; Liu, G. Chem. Sci. 2013, 4, 3172.

    17. [17]

      Sharma, H.; Santra, S.; Debnath, J.; Antonio, T.; Reith, M.; Dutta, A. Bioorg. Med. Chem. 2014, 22, 311.

    18. [18]

      Choi, P. J.; Rathwell, D. C. K.; Brimble, M. A. Tetrahedron Lett. 2009, 50, 3245. doi: 10.1016/j.tetlet.2009.02.030

    19. [19]

      Parrish, J. P.; Sudaresan, B.; Jung, K. W. Synth. Commun. 1999, 29, 4423. doi: 10.1080/00397919908086606

    20. [20]

      Hanamoto, T.; Shindo, K.; Matsuoka, M.; Kiguchi, Y.; Kondo, M. J. Chem. Soc., Perkin Trans. 1 2000, 103.

  • Scheme 1  Transition metal-catalyzed fluoroarylation of alkenes.

    Scheme 2  Pd-catalyzed fluorination of alkenes

    Scheme 3  Plausible reaction mechanism

    Table 1.  Optimization of the reaction conditiona

    Entry Cat. Additive Solvent (V:V) Yieldb/%
    1 PdCl2 BF3•Et2O MeCN 26
    2 Pd(CH3CN)2Cl2 BF3•Et2O MeCN 37
    3 Pd(PhCN)2Cl2 BF3•Et2O MeCN 42
    4 Pd(PhCN)2Cl2 BF3•Et2O MeCN/THF (9:1) 48
    5c Pd(PhCN)2Cl2 BF3•Et2O MeCN/THF (9:1) 53
    6c, d Pd(PhCN)2Cl2 BF3•Et2O MeCN/THF (9:1) 60
    7c, d Pd(PhCN)2Cl2 BPh3 MeCN/THF (9:1) 0
    8c, d Pd(PhCN)2Cl2 B(C6F5)3 MeCN/THF (9:1) 76 (70)e
    9c, d Pd(PhCN)2Cl2 TsOH MeCN/THF (9:1) 15
    10c, d Pd(PhCN)2Cl2 TfOH MeCN/THF (9:1) 23
    11c, d B(C6F5)3 MeCN/THF (9:1) 0
    12c, d Pd(PhCN)2Cl2 MeCN/THF (9:1) 15
    13c, d CuCl2 B(C6F5)3 MeCN/THF (9:1) 0
    14c, d AlCl3 B(C6F5)3 MeCN/THF (9:1) 0
    15c, d NiCl2 B(C6F5)3 MeCN/THF (9:1) 16
    16c, d PtCl2 B(C6F5)3 MeCN/THF (9:1) 24
    a All reactions were run at 0.2 mmol scale with ArIF2 (5 equiv). b Yields were obtained by 1H NMR with CH3NO2 as an internal standard. c Addition of 5 Å molecular sieves (25 mg). d 0 ℃. e Isolated yield indicated in parentheses.
    下载: 导出CSV

    Table 2.  Substrate scope for intramolecular fluoroarylationa

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  11
  • 文章访问数:  1196
  • HTML全文浏览量:  132
文章相关
  • 发布日期:  2019-01-25
  • 收稿日期:  2018-10-20
  • 修回日期:  2018-12-03
  • 网络出版日期:  2018-01-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索