铜催化二氟乙醇的芳基醚化反应及其机理研究

黄帅帅 聂一雪 杨晶晶 郑战江 曹建 徐征 徐利文

引用本文: 黄帅帅, 聂一雪, 杨晶晶, 郑战江, 曹建, 徐征, 徐利文. 铜催化二氟乙醇的芳基醚化反应及其机理研究[J]. 有机化学, 2020, 40(7): 2018-2025. doi: 10.6023/cjoc202003035 shu
Citation:  Huang Shuaishuai, Nie Yixue, Yang Jingjing, Zheng Zhanjiang, Cao Jian, Xu Zheng, Xu Liwen. Copper-Catalyzed Arylated Etherification of 2, 2-Difluoroethanol and Its Mechanistic Study[J]. Chinese Journal of Organic Chemistry, 2020, 40(7): 2018-2025. doi: 10.6023/cjoc202003035 shu

铜催化二氟乙醇的芳基醚化反应及其机理研究

    通讯作者: 郑战江, zzjiang78@hznu.edu.cn; 徐利文, liwenxu@hznu.edu.cn
  • 基金项目:

    国家自然科学基金(Nos.21703051,21801056)和杭州市科技局(No.20180432B05)资助项目

摘要: 有机氟硅化合物是元素有机化学中最重要的高端产品种类之一,极具研究价值.开发了含二氟乙醇农药的新工艺技术,发展了一种条件温和和高效的铜催化二氟乙醇芳基醚化反应,通过大量的配体筛选和条件优化,建立了二氟乙醇和芳基溴或芳基碘的C—O偶联反应,简易合成出各种芳基取代的二氟乙基芳基醚.该反应以CuI为催化剂,在8-羟基喹啉和叔丁醇钾存在下顺利进行,具有广泛的底物适用性.ESI-MS分析证明,该催化过程可能存在三价铜催化机制,密度泛函理论(DFT)计算进一步表明该反应机理可能涉及三价铜的氧化加成、亲核取代及还原消除过程.

English

  • In the past decades, fluorine-containing compounds have been widely used in various fields such as material chemistry, [1] medicinal chemistry, [2] and agrochemistry.[3] The effect of incorporating one or several fluorine atoms into an organic substrate can have a vital effect on the physical, chemical, and biological properties of the molecule, which is exemplified by the growing number of pharmaceuticals and agrochemicals that contain fluorine atoms in their structure.[4] Among organofluorinated molecules, difluoroethyl aryl ethers emerged as useful groups and were present in many bioactive substances due to high metabolic stability and significant lipophilicity of CF2HCH2O group (Scheme 1).[5, 6]

    Scheme 1

    Scheme 1.  Representative structures of bioactive molecules containing difluoroethyl aryl ether moiety

    Meanwhile, methods have been reported over the past decades for the assembling of difluoroethyl aryl ethers. The main method relies on the Williamson ether synthesis, which involves the nucleophilic addition of a phenol with a difluoroethyl electrophile, [7] such as difluoroethyl iodide or difluoroethyl mesylate. However, these strong alkylating agents are usually carcinogenic and therefore need extensive health and safety precautions (Scheme 1).[8] Thus, the development of more general and applicable methods to prepare the difluoroethyl aryl ethers having been an important theme in organic chemistry and drug discovery. In this regard, palladium-catalyzed C—O coupling reactions have been an efficient method over traditional methods.[9] For example, Singh and coworkers[10] reported a palladium-catalyzed cross-coupling reaction of primary fluoroalkyl alcohols with activated aryl halides. However, the limitation of this method is that these procedures required the use of the precious metal Pd and phosphine ligands. Inspired by the achievements of the Cu-catalyzed C—O coupling reaction, [11] we assume that an alternative method that involves the copper-catalyzed arylated etherification reaction between aryl halide and commercial 2, 2-difluoro- ethanol would be feasible (Scheme 1).

    Generally speaking, traditional Ullmann-typed C—O coupling procedures suffered from drawbacks such as harsh reaction conditions, stoichiometric amounts of copper and restricted range of substrates.[12] In the past two decades, important breakthroughs were reported for copper-catalyzed C—O coupling reaction with the use of appropriate ligands by the groups of Buchwald, Taillefer, Ma and Cai.[13] Therefore, the methods for the coupling of aryl halides and 2, 2, 2-trifluoroethanol were also developed.[14] However, there is no related report of the formation of difluoroethyl aryl ethers from 2, 2-difluoroethanol directly. Probably due to the weaker nucleophilicity of the 2, 2-di- fluoroethanol compared with the trifluoro one. Herein, we report the CuI catalyzed C—O coupling-type arylated etherification reaction for the preparation of difluoroethyl aryl ethers.

    The reaction of 3-bromobenzotrifluoride (1a) and 2, 2-difluoroethanol (2) in the presence of K3PO4 was initially examined, using CuI as the catalyst precursor and 8-hydroxyquinoline as the ligand at 100 ℃. However, no desired product was observed under this reported procedure (Table 1, Entry 1).[15] Then the results of replacing K3PO4 with Cs2CO3 were checked. To our delight, the reaction proceeded well to give the desired product 3a in 75% GC yield (Table 1, Entry 2). Encouraged by this, further optimization was first done with a survey of the ligand. Unfortunately, it was found that when using 1, 10-phenanthroline or ethyl 2-oxocyclohexanecarboxylate as ligand in the presence of Cs2CO3, the reaction proceeded sluggish to provide the target compound in trace yields (Table 1, Entries 3, 4). Given that the ligand/base can dramatically affect the yield, [16] a thorough screening of a range of base with 8-hydroxyquinoline has been carried out (Table 1, Entries 5~14). It was found that when EtONa, KOH, NaHCO3, KHCO3, KF, K2HPO4, or NaH was used as base, only trace product was formed. When NaOH or K2CO3 was used, little or moderate product was obtained (Table 1, Entries 5, 13). Gratifyingly, the desired product 3a was achieved in quantitative GC yield when t-BuOK was used as base after 12 h in the presence of 8-hydroxyquinoline (Table 1, Entry 14). As expected, when CF3CH2OH was used instead of CHF2CH2OH in this condition, the reaction proceeded well in nearly quantitative GC yield.[14b]

    表 1

    表 1  Optimization of reaction conditionsa
    下载: 导出CSV
    Entry Base L Yieldb/%
    1 K3PO4 8-Hydroxyquinoline 0
    2 Cs2CO3 8-Hydroxyquinoline 75
    3 Cs2CO3 1, 10-Phenanthroline Trace
    4 Cs2CO3 Ethyl 2-oxocyclohexane carboxylate Trace
    5 NaOH 8-Hydroxyquinoline 13
    6 C2H5ONa 8-Hydroxyquinoline Trace
    7 KOH 8-Hydroxyquinoline Trace
    8 NaHCO3 8-Hydroxyquinoline Trace
    9 K2HPO4 8-Hydroxyquinoline Trace
    10 KF 8-Hydroxyquinoline Trace
    11 KHCO3 8-Hydroxyquinoline Trace
    12 NaH 8-Hydroxyquinoline Trace
    13 K2CO3 8-Hydroxyquinoline 58
    14 t-BuOK 8-Hydroxyquinoline 100
    a Reaction conditions: 1a (1.0 mmol), 2 (2 mL), base (2 equiv.), CuI (0.1 equiv.) and ligand (0.2 equiv.), 100 ℃ for 12 h. b GC yield.

    With the optimized reaction conditions in hand, the sub-strate generality of this copper-catalyzed arylated etherification of 2, 2-difluoroethanol with various aryl halides was explored. As shown in Scheme 2, the reactions of aryl bromides containing CF3, methoxy or Cl group at meta-positions provided the desired product in good isolated yields (3a~3c). Further, when aryl bromides bearing electron-withdrawing or electron-donating groups at para-positions were used, the etherification reactions also proceeded smoothly to give the desired difluoroethyl aryl ethers in good yields (3d~3l). It is noted that when the aryl bromides containing two substituents at the 3, 4 or 3, 5 positions were used, the etherification reactions proceeded well with moderate to good yields (3m~3q). Particularly, tri-substituted 3, 4, 5-trimethoxybromobenzene was compatible with this method to furnish the corresponding ether with moderate yield (3r). In addition, 3-bromopyridine was well tolerated and the desired product (3v) was given in 73% isolated yield. However, the reactions of aryl bromides with orth-substituents gave the difluoroethyl aryl ethers in low yields owing to the steric effect (3s~3u).

    Scheme 2

    Scheme 2.  Two proposed pathways for the Cu catalyzed reaction of aryl bromide (1a) and 2, 2-difluoroethanol (2)

    Next, the scope of aryl iodides was investigated for the CuI catalyzed C—O coupling in the presence of 8-hydro- xyquinoline/t-BuOK with 2, 2-difluoroethanol (Scheme 3). In general, various aryl iodides are suitable for this reac- tion. The steric and electronic effects of the substituents on yields are similar to aryl bromides. For example, aryl iodides with NO2, CN at para-position or OMe, Cl, NO2, CF3 at meta-positon, were all smoothly coupled with 2, 2-difluoroethanol, giving desired products in excellent yields (5a~5g). While aryl iodides with NH2 or CN at ortho-position only showed low reactivity with low to moderate yields (5h~5k). Though aryl iodides with NH2 or CN at ortho-position only showed low reactivity (5h~5k), the corresponding products are valuable substrates for the hydrogen-borrowing reaction.[17]

    表 2

    表 2  CuI/8-Hydroxyquinoine-catalyzed arylated etherification reaction of aryl bromides with 2, 2-difluoroethanol
    下载: 导出CSV

    表 3

    表 3  CuI/8-Hydroxyquinoine catalyzed coupling reaction of aryl iodides with 2, 2-difluoroethanol
    下载: 导出CSV

    Finally, we focused on elucidating the possible mechanism of this type of copper-catalyzed C—O cross coupling reaction. Based on previous reports, most studies support the initial formation of LCu(Ⅰ)Nu complex, then oxidative addition of aryl halide (ArBr) to the complex, followed by dissociation of HBr providing LCu(Ⅲ)Ar(OR), which regenerates the active Cu(Ⅰ) species and the desired product ArOR through reductive elimination. However, the detection of organometallic copper(Ⅲ) complexes has been very scarce under this catalytic Ullmann reaction conditions.[18] In order to have a better insight of the reaction pathway, several mechanistic experiments were carried out. Firstly, when a stoichiometric amount of radical scavenger 2, 2, 6, 6- tetramethylpiperidine-1-oxyl (TEMPO) was added, the reaction was not suppressed and the difluoroethyl aryl ether 3a was delivered in 97% GC yield, which indicated that the reaction probably didn’t involve a radical process. Further, in situ ESI-MS analysis was carried out. A solution of 2, 2-difluoroethanol (5 equiv.), potassium tert- butoxide (2 equiv.), m-bromobenzotrifluo- ride (1 equiv.), CuI (10 mol%) and 8-hydroxyquinoline (20 mol%) was stirred at room temperature for 40 min. ESI-MS analysis (Figure 1) of the reaction solution showed the peak m/z 389.98 which is identified as [CuL2]K+ and the peak of its dimer at m/z 743.01. Very fortunately, the peak at m/z 868.91 was observed, which is identified as the dimer of LCu(Ⅲ)Ar(OR). Obviously, it is the direct evidence for the existence of Cu(Ⅲ) intermediate during this difluoro- ethoxylation reaction.

    图 1

    图 1.  ESI-MS experiment on the CuI-catalyzed arylated etherification reaction between m-bromobenzotrifluoride and 2, 2- difluoroethanol

    On the basis of above experimental results and the literature precedence as well as our density functional theory (DFT) calculations, [19] two plausible reaction pathways were proposed for this catalytic Ullmann-type arylated etherification reaction (Scheme 2). The path A begins with the coordination of the nucleophile CHF2CH2O to the Cu(Ⅰ) center ([CuL2]) to give [LCu-Nu] (Int 1), which is followed by the oxidative addition with aryl bromide to form the LCu(Ⅲ)Ar(OR) species (Int 3). The subsequent reductive elimination gives the desired coupling product, together with the releasing of the Cu(Ⅰ) species. The path B would start with the oxidative addition of the [CuL2] intermediate with aryl bromide, then the rapid ligand substitution with nucleophile forms the detectable LCu(Ⅲ)- Ar(OR) (Int 3). Finally, reductive elimination from Int 3 would then produce the coupling product. As shown in Figure S2 and Figure S3 (see supporting information), the two Cu(Ⅰ) complexes [LCu-Nu] and [CuL2] would perform the oxidative addition with aryl bromide as the rate-limiting step of the reaction. However, the free energy barrier for oxidative addition of [LCu-Nu]ˉ in path A is 89.6 kJ/mol, while the free energy barrier of [CuL2] in path B is only 70.3 kJ/mol. It was due to that electron- rich [CuL2] would be more reactive toward oxidative addition than [LCu-Nu] complex. By comparison, the following reductive elimination is a facile step for both pathway with an energy barrier of 15.9 kJ/mol. Hence, the previous report suggested that the coordination of nucleophile to Cu(Ⅰ) may occur before activation of the aryl halide (path A). In our case, however, the path B involving oxidative addition/nucleophile substitution and reductive elimina- tion, is more reasonable.

    In summary, we have developed a general and efficient method for the construction of difluoroethyl aryl ethers through the C—O coupling-type arylated etherification reaction of aryl bromides or iodides with 2, 2-difluoroe- thanol. The reaction proceeded smoothly with CuI as a catalyst and 8-hydroxyquinoline as a ligand in the presence of t-BuOK under mild conditions. In addition, ESI-MS studies reveal that LCu(Ⅲ)Ar(OR) complex is involved in the reaction, and further DFT calculations support the new pathway of this C—O coupling reaction.

    Unless specifically stated, all reagents were commercially obtained and purified prior to use if appropriate. Flash column chromatography was performed over silica (100~200 mesh). 1H NMR and 13C NMR spectra were recorded at 400 and 100 MHz, respectively on an Advance (Bruker) 400 MHz Nuclear Magnetic Resonance Spectromer, and were referenced to the internal solvent signals. EI and CI mass spectra were performed on a Trace DSQ GC/ MS spectrometer. High Resolution Mass Spectra (ESI- HRMS) were operated on a microOTOF-QII (Bruker). Thin layer chromatography was performed using Silica.

    To a solution of CuI (19 mg, 0.1 mmol), 8-hydroxy- quinoline (29 mg, 0.2 mmol) and t-BuOK (224 mg, 2 mmol) in 2, 2-difluoroethanol (2 mL) was added aryl bromide or aryl iodides (1 mmol). The mixture was heated at 100 ℃ for 12 h and then saturated NH4Cl (30 mL) was added. The mixture was filtered through a pad of celite, and extracted with EtOAc (30 mL×3). The combined organic phase was dried over Na2SO4, concentrated in vacuo, and purified by flash column chromatograph on silica gel to give the corresponding coupling product.

    1-(2, 2-Difluoroethoxy)-3-(trifluoromethyl)benzene (3a): Light yellow liquid. 1H NMR (400 MHz, CDCl3) δ: 7.43 (t, J=8.0 Hz, 1H), 7.31~7.25 (m, 1H), 7.16 (s, 1H), 7.10 (dd, J=8.4, 2.0 Hz, 1H), 6.11 (tt, J=54.8, 4.0 Hz, 1H), 4.22 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 158.0, 132.3 (q, J=33 Hz), 130.4, 123.9 (q, J=267 Hz), 118.9 (q, J=4 Hz), 118.2, 113.5 (t, J=240 Hz), 111.7 (q, J=4 Hz), 67.6 (t, J=30 Hz); HRMS (APCI) calcd for C9H7F5O: 226.0412, found 226.0420.

    1-(2, 2-Difluoroethoxy)-3-methoxybenzene (3b): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ:7.20 (t, J=8.1 Hz, 1H), 6.62~6.54 (m, 1H), 6.54~6.44 (m, 2H), 6.07 (tt, J=55.2, 4.4 Hz, 1H), 4.16 (td, J=13.2, 4.4 Hz, 2H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 161.1, 159.1, 130.3, 113.8 (t, J=240 Hz), 107.7, 106.6, 101.5, 67.4 (t, J=30 Hz), 55.5; HRMS (APCI) calcd for C9H11F2O2 [M+H]+: 189.0722, found 189.0726.

    1-Chloro-3-(2, 2-difluoroethoxy)benzene (3c): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ: 7.23 (dd, J=10.4, 2.4 Hz, 1H), 7.03~6.98 (m, 1H), 6.95~6.90 (m, 1H), 6.84~6.79 (m, 1H), 6.08 (tt, J=54.8, 4.0 Hz, 1H), 4.16 (td, J=13.2, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 158.5, 135.3, 130.6, 130.4, 122.4, 115.3, 113.6 (t, J240 Hz), 113.1, 67.5 (t, J=30 Hz); HRMS (APCI) calcd for C8H7ClF2O: 192.0148, found 192.0152.

    1-(2, 2-Difluoroethoxy)-4-methylbenzene (3d): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ: 7.02 (d, J=8.3 Hz, 2H), 6.73 (d, J=8.6 Hz, 2H), 5.98 (tt, J=55.2, 4.0 Hz, 1H), 4.06 (td, J=13.2, 4.0 Hz, 2H), 2.23 (s, J=9.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 155.8, 131.4, 130.2, 114.7, 114.0 (t, J=240 Hz), 67.6 (t, J=30 Hz), 20.6; HRMS (APCI) calcd for C9H11F2O [M+H]+: 173.0772, found 173.0779.

    1-(2-(2, 2-Difluoroethoxy)phenyl)ethanone (3e): Pale yellow solid, m.p. 48~50 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.99~7.93 (m, 2H), 6.96 (d, J=8.9 Hz, 2H), 6.12 (tt, J=54.8, 4.0 Hz, 1H), 4.25 (td, J=12.8, 4.0 Hz, 2H), 2.57 (s, 3H); 13C NMR (100 MHz, CDCl3) δ: 196.7, 161.5, 131.6, 130.8, 114.4, 113.5 (t, J=240 Hz), 67.3 (t, J=30 Hz), 26.5; HRMS (APCI) calcd for C10H11F2O2 [M+H]+: 201.0722, found 201.0730.

    1-(2, 2-Difluoroethoxy)-4-fluorobenzene (3f): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ: 7.03~6.94 (m, 2H), 6.90~6.82 (m, 2H), 6.07 (tt, J=55.2, 4.0 Hz, 1H), 4.14 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 159.3, 156.9, 154.0, 116.3 (d, J=20 Hz), 116.0 (d, J=8 Hz), 116.0, 113.8 (t, J=240 Hz), 68.2 (t, J=29 Hz); HRMS (APCI) calcd for C8H7F3O: 176.0444, found 176.0447.

    4-(2, 2-Difluoroethoxy)biphenyl (3g): White solid, m.p. 87~89 ℃; 1H NMR (400 MHz, CDCl3) δ: 7.57~7.51 (m, 4H), 7.42 (t, J=7.6 Hz, 2H), 7.34 (s, 1H), 7.32 (t, J=7.3 Hz, 1H), 6.11 (tt, J=54.8, 4.0 Hz, 1H), 4.22 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 157.4, 140.6, 135.3, 128.9, 128.5, 127.1, 127.0, 115.1, 113.9 (t, J=240 Hz), 67.57 (t, J=30 Hz); MS (EI) m/z: 234, 215, 183, 169, 153, 76.

    1-tert-Butyl-4-(2, 2-Difluoroethoxy)benzene(3h): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ: 7.24 (d, J=8.8 Hz, 2H), 6.77 (d, J=8.8 Hz, 2H), 5.99 (tt, J=55.6, 4.4 Hz, 1H), 4.08 (td, J=13.2, 4.0 Hz, 2H), 1.22 (s, 9H); 13C NMR (100 MHz, CDCl3) δ: 155.7, 144.9, 126.6, 114.3, 114.0 (t, J240 Hz), 67.6 (t, J=30 Hz), 34.3, 31.6; HRMS (APCI) calcd for C12H16F2O: 214.1164, found 214.1150.

    4-(2, 2-Difluoroethoxy)benzonitrile (3i): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ: 7.63 (d, J=8.9 Hz, 2H), 6.99 (d, J=8.9 Hz, 2H), 6.11 (tt, J=54.8, 4.0 Hz, 1H), 4.24 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 160.9, 134.3, 118.8, 115.4, 113.3 (t, J=240 Hz), 105.7, 67.3 (t, J=30 Hz); HRMS (APCI) calcd for C9H8F2NO [M+H]+: 184.0568, found 184.0572.

    1-(2, 2-Difluoroethoxy)-4-(trifluoromethyl)benzene (3j): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ: 7.58 (d, J=8.6 Hz, 2H), 6.99 (d, J=8.6 Hz, 2H), 6.11 (tt, J=54.8, 4.0 Hz, 1H), 4.22 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ: 160.2, 127.3 (q, J=4 Hz), 124.4 (q, J33 Hz), 124.4 (q, J=70 Hz), 114.8, 113.5 (t, J=240 Hz), 67.4 (t, J=29 Hz); HRMS (APCI) calcd for C9H8F5O: 226.0412, found 226.0420.

    1-(2, 2-Difluoroethoxy)-4-methoxybenzene (3k): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ: 6.89~6.80 (m, 4H), 6.05 (tt, J=55.2, 4.0 Hz, 2H), 4.12 (td, J=13.2, 4.0 Hz, 2H), 3.77 (d, J=2.5 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ: 154.9, 152.1, 132.4, 116.0, 114.9, 114.0 (t, J=240 Hz), 68.4 (t, J=30 Hz), 55.8; HRMS (APCI) calcd for C9H11F2O2 [M+H]+: 189.0722, found 189.0731.

    4-(2, 2-Difluoroethoxy)-N, N-dimethylbenzenamine (3l): Purple black solid, m.p. 59~61 ℃; 1H NMR (400 MHz, CDCl3) δ:6.85~6.76 (m, 2H), 6.71 (d, J=7.6 Hz, 2H), 5.98 (tt, J=55.2, 4.0 Hz, 1H), 4.05 (td, J=13.2, 4.0 Hz, 2H), 2.82 (s, 6H); 13C NMR (100 MHz, CDCl3) δ:116.1, 115.0, 114.1 (t, J=240 Hz), 111.7, 100.2, 68.8 (t, J30 Hz), 41.9; HRMS (APCI) calcd for C10H14F2NO [M+H]+: 202.1038, found 202.1045.

    4-(2, 2-Difluoroethoxy)-1, 2-dimethoxybenzene (3m): Pale yellow liquid. 1H NMR (400 MHz, CDCl3) δ:6.76 (t, J=8.9 Hz, 1H), 6.55 (d, J=2.8 Hz, 1H), 6.39 (dd, J=8.7, 2.8 Hz, 1H), 6.06 (tt, J=55.2, 4.1 Hz, 1H), 4.13 (td, J=13.2, 4.1 Hz, 2H), 3.84 (d, J=6.5 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ:152.4, 150.1, 144.5, 113.8 (t, J240 Hz), 111.8, 104.1, 101.3, 68.0 (t, J=30 Hz), 56.4, 55.9, 25.7; HRMS (APCI) calcd for C10H13F2O [M+H]+: 219.0827, found 219.0833.

    1-(2, 2-Difluoroethoxy)-3, 5-dimethylbenzene (3n): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ:6.58 (s, 1H), 6.46 (s, 2H), 5.98 (tt, J=55.2, 4.4 Hz, 1H), 4.06 (td, J=13.2, 4.8 Hz, 2H), 2.21 (s, 6H); 13C NMR (100 MHz, CDCl3) δ:157.9, 139.7, 123.8, 114.0 (t, J=240 Hz), 112.5, 67.4 (t, J=29 Hz), 21.5; HRMS (APCI) calcd for C10H13F2O [M+H]+:187.0929, found 187.0922.

    1-(2, 2-Difluoroethoxy)-3, 5-dimethoxybenzene (3o): Co- lorless liquid. 1H NMR (400 MHz, CDCl3) δ:6.13~6.14 (m, 1H), 6.08 (m, 2H), 6.07 (tt, J=55.2, 4.4 Hz, 1H), 4.13 (td, J=13.2, 4.0 Hz, 2H), 3.77 (s, 6H); 13C NMR (100 MHz, CDCl3) δ:161.7, 159.7, 113.7 (t, J=240 Hz), 94.1, 93.6, 67.3 (t, J=30 Hz), 55.5; HRMS (ESI) calcd for C16H25F2O [M+H]+: 219.0827, found 219.0824.

    1, 3-Di-tert-butyl-5-(2, 2-Difluoroethoxy)benzene (3p): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ:7.09 (t, J=1.4 Hz, 1H), 6.77 (d, J=1.5 Hz, 2H), 6.09 (tt, J=55.2, 4.0 Hz, 1H), 4.18 (td, J=13.2, 4.4 Hz, 2H), 1.30 (d, J=7.8 Hz, 18H); 13C NMR (100 MHz, CDCl3) δ:157.5, 152.8, 116.4, 114.1 (t, J=240 Hz), 109.1, 67.5 (t, J=30 Hz), 35.2, 31.6; HRMS (APCI) calcd for C16H25F2O [M+H]+: 271.1868, found 271.1875.

    1-(2, 2-Difluoroethoxy)-3, 5-bis(trifluoromethyl)benzene (3q): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ:7.55 (s, 1H), 7.35 (s, 2H), 6.13 (tt, J=54.8, 4.0 Hz, 1H), 4.27 (tt, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:158.4, 133.4 (q, J=33 Hz), 123.1 (q, J=271 Hz), 115.8 (q, J=4 Hz), 115.2, 113.1 (t, J=240 Hz), 67.8 (t, J=30 Hz); HRMS (APCI) calcd for C10H6F8O: 294.0285, found 294.0292.

    5-(2, 2-Difluoroethoxy)-1, 2, 3-trimethoxybenzene (3r): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ:6.21 (t, J=4.0 Hz, 0.25H), 6.17 (s, 2H), 6.07 (t, J=4.2 Hz, 0.5H), 5.94 (t, J=4.2 Hz, 0.25H), 4.16 (td, J=13.2, 4.0 Hz, 2H), 3.85 (s, 6H), 3.79 (s, 3H); 13C NMR (100 MHz, CDCl3) δ:154.5, 154.0, 133.4, 113.8 (t, J=240 Hz), 92.8, 68.0 (t, J=29 Hz), 61.2, 56.3; HRMS (APCI) calcd for C11H15F2O4 [M+H]+: 249.0933, found 249.0940.

    1-(2-(2, 2-Difluoroethoxy)phenyl)ethanone (3s): Pale yellow solid, m.p. 76~78 ℃; 1H NMR (400 MHz, CDCl3) δ:7.77 (dd, J=7.6, 1.6 Hz, 1H), 7.53~7.43 (m, 1H), 7.09 (t, J=8.0 Hz, 1H), 6.91 (d, J=8.0 Hz, 1H), 6.16 (tt, J=54.8, 4.0 Hz, 1H), 4.29 (td, J=13.2, 4.0 Hz, 2H), 2.63 (s, 3H); 13C NMR (100 MHz, CDCl3) δ:199.3, 156.8, 133.8, 130.9, 128.9, 122.2, 113.3 (t, J=240 Hz), 112.4, 67.6 (t, J=29 Hz), 32.0; HRMS (APCI) calcd for C10H11F2O2 [M+H]+: 201.0722, found 201.0726.

    2-(2, 2-Difluoroethoxy)biphenyl (3t): Yellow liquid. 1H NMR (400 MHz, CDCl3) δ:7.48~7.41 (m, 2H), 7.37~7.21 (m, 5H), 7.04 (td, J=7.6, 0.8 Hz, 1H), 6.89 (d, J=8.1 Hz, 1H), 5.88 (tt, J=55.3, 4.2 Hz, 1H), 4.05 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:154.9, 138.0, 131.8, 131.4, 129.6, 128.8, 128.2, 127.3, 122.7, 113.9 (t, J=240 Hz), 113.6, 68.4 (t, J=30 Hz), 31.8, 29.8, 1.9; HRMS (APCI) calcd for C14H13F2O [M+H]+: 235.0929, found 235.0935.

    1-(2, 2-Difluoroethoxy)-2-fluorobenzene (3u): Light yellow liquid. 1H NMR (400 MHz, CDCl3) δ:6.97~7.05 (m, 2H), 6.89~6.93 (m, 2H), 6.03 (tt, J=56.0, 4.0 Hz, 1H), 4.05 (td, J=12.0, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:153.0 (d, J=245 Hz), 145.8 (d, J=10 Hz), 124.5, 124.4, 123.0 (d, J=7 Hz), 116.7 (t, J=18 Hz), 113.6 (t, J=240 Hz), 69.1 (t, J=29 Hz); MS (EI) m/z: 176, 157, 125, 111, 95, 81, 65.

    3-(2, 2-Difluoroethoxy)pyridine (3v): Light yellow liquid. 1H NMR (400 MHz, CDCl3) δ:8.35 (s, 1H), 8.30 (m, 1H), 7.23~7.28 (m, 2H), 6.11 (tt, J=56.0, 4.0 Hz, 1H), 4.24 (td, J=16.0, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:154.0, 143.4, 137.9, 124.0, 121.5, 113.3 (t, J=240 Hz), 67.4 (t, J=30 Hz); MS (EI) m/z: 159, 108, 95, 91, 78, 73. HRMS (ESI) calcd for C7H8F2NO [M+H]+: 160.0568, found 160.0568.

    1-(2, 2-Difluoroethoxy)-3-nitrobenzene (5c): Yellow solid, m.p. 41~43 ℃, 1H NMR (400 MHz, CDCl3) δ:7.91 (dd, J=8.0, 1.8 Hz, 1H), 7.76 (t, J=2.2 Hz, 1H), 7.49 (t, J=8.2 Hz, 1H), 7.28 (dd, J=8.4, 1.6 Hz, 1H), 6.13 (tt, J=54.8, 4.0 Hz, 1H), 4.28 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:158.3, 149.4, 130.5, 121.8, 117.2, 113.3 (t, J=240 Hz), 109.2, 67.8 (t, J=30 Hz); HRMS (APCI) calcd for C8H8 F2NO3 [M+H]+: 204.0467, found 204.0472.

    1-(2, 2-Difluoroethoxy)-2-nitrobenzene (5f): Yellow solid, m.p. 50~52 ℃; 1H NMR (400 MHz, CDCl3) δ:7.87 (dd, J=8.4, 1.6 Hz, 1H), 7.57 (td, J=8.4, 1.6 Hz, 1H), 7.18~7.07 (m, 2H), 6.15 (tt, J=54.8, 4.0 Hz, 1H), 4.32 (td, J=12.8, 4.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:151.2, 140.7, 134.3, 126.0, 122.4, 115.8, 113.3 (t, J=240 Hz), 69.2 (t, J=30 Hz); HRMS (APCI) calcd for C8H8F2NO3 [M+H]+: 204.0467, found 204.0476.

    2-(2, 2-Difluoroethoxy)benzenamine (5h): Black oil. 1H NMR (400 MHz, CDCl3) δ:6.77 (td, J=8.0, 1.6 Hz, 1H), 6.71~6.57 (m, 3H), 6.00 (tt, J=55.2, 4.4 Hz, 1H), 4.10 (td, J=13.2, 4.4 Hz, 2H), 3.72 (s, 2H); 13C NMR (100 MHz, CDCl3) δ:145.4, 136.8, 122.9, 120.0, 118.5, 115.8, 113.8 (t, J=240Hz), 112.6, 68.0 (t, J=29 Hz); HRMS (APCI) calcd for C8H10F2NO [M+H]+: 174.0725, found 174.0730.

    2-(2, 2-Difluoroethoxy)benzonitrile (5i): Colorless liquid. 1H NMR (400 MHz, CDCl3) δ:7.49 (dd, J=15.6, 7.6 Hz, 2H), 7.02 (dd, J=7.6, 0.8 Hz, 1H), 6.91 (d, J=8.3 Hz, 1H), 6.08 (tt, J=54.8, 4.0 Hz, 1H), 4.23 (td, J=12.8, 4.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:159.2, 134.6, 134.1, 122.3, 115.8, 113.3 (t, J=240 Hz), 112.7, 102.7, 68.0 (t, J=30 Hz); HRMS (APCI) calcd for C9H8F2NO [M+H]+: 184.0568, found 184.0572.

    1-(2, 2-Difluoroethoxy)-4-nitrobenzene (5j): Light yellow solid, m.p. 87~88 ℃; 1H NMR (400 MHz, CDCl3) δ:788 (d, J=1.6 Hz, 1H), 7.86~7.58 (m, 1H), 7.18~7.09 (m, 2H), 6.14 (tt, J=54.8, 4.0 Hz, 1H), 4.29 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:162.5, 142.6, 126.2, 114.8, 113.2 (t, J=240 Hz), 67.6 (t, J=30 Hz); HRMS (APCl) calcd for C8H8F2NO3 [M+H]+ 204.0467, found 204.0475.

    1-(2, 2-Difluoroethoxy)naphthalene (5k): Brown liquid. 1H NMR (400 MHz, CDCl3) δ:8.22~8.14 (m, 1H), 7.74 (dd, J=5.6, 2.4 Hz, 1H), 7.47~7.38 (m, 3H), 7.29 (t, J=8.0 Hz, 1H), 6.72 (d, J=7.6 Hz, 1H), 6.16 (tt, J=55.2, 4.0 Hz, 1H), 4.28 (td, J=12.8, 4.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ:153.6, 134.7, 127.7, 126.9, 125.8, 125. 7, 125.6, 121.9, 121.8, 113.9 (t, J=240 Hz), 105.3, 67.7 (t, J=30 Hz); HRMS (APCI) calcd for C12H11F2O [M+H]+: 209.0772, found 209.0780.

    Supporting Information NMR spectra for compounds, ESI-MS analysis of reaction intermediates, and DFT studies are available free of charge in the Supporting Information via the Internet at http://sioc-journal.cn/.


    1. [1]

      (a) Nakajima, T.; Groult, H. Fluorinated Materials for Energy Conversion, Elsevier, London, 2005.
      (b) Wong, S.; Ma, H.; Jen, A. K. Y.; Barto, R.; Frank, C. W. Macromolecules 2003, 36, 8001.
      (c) Wong, S.; Ma, H.; Jen, A. K. Y.; Barto, R.; Frank, C. W. Macromolecules 2004, 37, 5578.

    2. [2]

      (a) Tressaud, A.; Haufe, G. Fluorine and Health: Molecular Imaging, Biomedical Materials and Pharmaceuticals, Elsevier, London, 2008.
      (b) Ojima, I. Fluorine in Medicinal Chemistry and Chemical Biology, Wiley, Hoboken, 2009.
      (c) Xu, X. H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2015, 115, 731.

    3. [3]

      Jeschke, P. ChemBioChem 2004, 5, 570. https://pubmed.ncbi.nlm.nih.gov/15122630/

    4. [4]

      (a) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry, Principles and Commercial Applications, Plenum, New York, 1994.
      (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.
      (c) Wang, J.; Sanchez-Rosello, M.; Acena, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

    5. [5]

      (a) Gao, X.; Cheng, R.; Xiao, Y. L.; Wan, X. L.; Zhang, X. G. Chem 2019, 5, 2987.
      (b) Begue, J. P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992.
      (c) Cerqueira, N. M. F. S. A.; Fernandes, P. A.; Ramos, M. J. Chemistry 2007, 13, 8507.
      (d) Teague, S. J. Drug Discovery Today 2011, 16, 398.
      (e) Cheng, J. J.; Giguere, P. M.; Onajole, O. K.; Lv, W.; Gaisin, A.; Gunosewoyo, H.; Schmerberg, C.; Pogorelov, V. M.; Rodriguiz, R. M.; Vistoli, G.; Wetsel, W. C.; Roth, B. L.; Kozikowski, A. P. J. Med. Chem. 2015, 58, 1992.
      (f) Johan, B. WO 2010132016, 2010.
      (g) Gregory, B. M. WO 02072528, 2002.
      (h) Gernert, D. L.; Ajamie, R.; Ardecky, R. A.; Bell, M. G.; Leibowitz, M. D.; Mais, D. A.; Mapes, C. M.; Michellys, P. Y.; Rungta, D.; Reifel-Miller, A.; Tyhonas, J. S.; Yumibe, N.; Grese, T. A. Bioorg. Med. Chem. Lett. 2003, 13, 3191.
      (i) Ulrich, K. WO 2005085203, 2005.
      (j) Ulrich, K. WO 2006092417, 2006.

    6. [6]

      (a) Irrupe, Jr. J.; Casas, J.; Messeguer, A. Bioorg. Med. Chem. Lett. 1993, 3, 179.
      (b) Thomas, W. J.; Ronald, S. T. J. Agric. Food Chem. 2005, 53, 7179.

    7. [7]

      (a) Schwan, G.; Asskar, G. B.; Hcfgen, N.; Kubicova, L.; Funke, U.; Egerland, U.; Zahn, M.; Nieber, K.; Scheunemann, M.; Strter, N.; Brust, P.; Briel, D. ChemMedChem 2014, 9, 1476.
      (b) OShea, P. D.; Gauvreau, D.; Gosselin, F.; Hughes, G.; Nadeau, C.; Roy, A.; Scott Shultz, C. J. Org. Chem. 2009, 74, 4547.
      (c) Kamal, A.; Pratap, T. B.; Ramana, K. V.; Ramana, A. V.; Babu, A. H. Tetrahedron Lett. 2002, 43, 7353.
      (d) Camps, F.; Coll, J.; Messeguer, A.; Perics, M. A. Synthesis 1980, 727.

    8. [8]

      Fuhrmann, E.; Talbiersky, J. Org. Process Res. Dev. 2005, 9, 206. doi: 10.1021/op050001h

    9. [9]

      (a) Zhang, H.; Ruiz-Castillo, P.; Buchwald, S. L. Org. Lett. 2018, 20, 1580.
      (b) Gowrisankar, S.; Sergeev, A. G.; Anbarasan, P.; Spannenberg, A.; Neumann, H.; Beller, M. J. Am. Chem. Soc. 2010, 132, 11592.
      (c) Sawatzky, R. S.; Hargreaves, B. K. V.; Stradiotto, M. Eur. J. Org. Chem. 2016, 2016, 2444.
      (d) Dumrath, A.; Wu, X. F.; Neumann, H.; Spannenberg, A.; Jackstell, R.; Beller, M. Angew. Chem., Int. Chem. 2010, 49, 8988.
      (e) Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121, 3224.

    10. [10]

      Rangarajan, T. M.; Singh, R.; Brahma, R.; Devi, K.; Pal Singh, R.; Singh, R. P.; Prasad, A. K. Chem.-Eur. J. 2014, 20, 14218. doi: 10.1002/chem.201404121

    11. [11]

      (a) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459.
      (b) Goodbrand, H. B.; Hu, N. X. J. Org. Chem. 1999, 64, 670.
      (c) Fagan, P. J.; Hauptman, E.; Shapiro, R.; Casalnuovo, A. J. Am. Chem. Soc. 2000, 122, 5043.

    12. [12]

      (a) Suzuki, H.; Matuoka, T.; Ohtsuka, I.; Osuka, A. Synthesis 1985, 499.
      (b) Sugata, H.; Tsubogo, T.; Kino, Y.; Uchiro, H. Tetrahedron Lett. 2017, 58, 1015.

    13. [13]

      (a) Wolter, M.; Nordmann, G.; Job, E.; Buchwald, S. L. Org. Lett. 2002, 4, 973.
      (b) Tlili, A.; Xia, N.; Monnier, F.; Taillefer, M. Angew. Chem., Int. Chem. 2009, 48, 8725.
      (c) Chen, Z. X.; Jiang, Y. W.; Zhang, L.; Guo, Y. L.; Ma, D. W. J. Am. Chem. Soc. 2019, 141, 3541.
      (d) Cai, Q.; Zhou, W. Chin. J. Chem. 2020, 38, 879.

    14. [14]

      (a) Huang, R. L.; Huang, Y. J.; Lin, X. X.; Rong, M.; Weng, Z. Angew. Chem., Int. Ed. 2015, 54, 5736.
      (b) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Eur. J. Org. Chem. 2009, 3513.

    15. [15]

      Niu, J. J.; Guo, P. R.; Kang, J. T.; Li, Z. G.; Xu, J. W.; Hu, S. J. J. Org. Chem. 2009, 74, 5075.

    16. [16]

      (a) Qian, C.; Zhu, W.; Liu, J.; Wang, X.; Qiu, L. Chin. J. Org. Chem. 2019, 39, 1695(in Chinese).
      (钱存卫, 朱文倩, 刘俊龙, 王雪敏, 仇立干, 有机化学, 2019, 39, 1695.)
      (b) Liu, X.; Chen, W.; Ni, B.; Chen, X.; Qian, C.; Ge, X. Chin. J. Org. Chem. 2018, 38, 1703(in Chinese).
      (刘学民, 陈雯, 倪邦庆, 陈新志, 钱超, 葛新, 有机化学, 2018, 38, 1703.)
      (c) Hu, X.; Yang, B.; Yao, W.; Wang, D. Chin. J. Org. Chem. 2018, 38, 3296(in Chinese).
      (胡昕宇, 杨伯斌, 姚玮, 王大伟, 有机化学, 2018, 38, 3296.)

    17. [17]

      (a) Ye, D.; Huang, R.; Zhu, H.; Zou, L.; Wang, D. Org. Chem. Front. 2019, 6, 62.
      (b) Hu, W.; Zhang, Y.; Zhu, H.; Ye, D.; Wang, D. Green Chem. 2019, 21, 5345.
      (c) Wang, D.; Zhao, K.; Xu, C.; Miao, H.; Ding, Y. ACS Catal. 2014, 4, 3910.

    18. [18]

      (a) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010, 49, 676.
      (b) Cristau, H. J.; Cellier, P. P.; Spinddler, J. F.; Taillefer, M. Chem.- Eur. J. 2004, 10, 5607.
      (c) Xie, X.; Cai, G.; Ma, D. Org. Lett. 2005, 7, 4693.
      (d) Xie, X.; Chen, Y.; Ma, D. J. Am. Chem. Soc. 2006, 128, 16050.

    19. [19]

      (a) Yu, H. Z.; Jiang, Y. Y.; Fu, Y.; Liu, L. J. Am. Chem. Soc. 2010, 132, 18078.
      (b) Ribas, X.; Guell, I. Pure Appl. Chem. 2014, 86, 345.
      (c) Jones, G. O.; Liu, P.; Houk, K. N.; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 6205.
      (d) Casitas, A.; Ribas, X. Chem. Sci. 2013, 4, 2301.
      (e) Sambiagio, C.; Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Chem. Soc. Rev. 2014, 43, 3525.
      (f) Lefevre, G.; Franc, G.; Tlili, A.; Adamo, C.; Taillefer, M.; Ciofini, I.; Jutand, A. Organometallics 2012, 31, 7694.
      (g) Giri, R.; Brusoe, A.; Troshin, K.; Wang, J. Y.; Font, M.; Hartwig, J. F. J. Am. Chem. Soc. 2018, 140, 793.
      (h) Tye, J. W.; Weng, Z.; Giri, R.; Hartwig, J. F. Angew. Chem., Int. Ed. 2010, 49, 2185.

  • Scheme 1  Representative structures of bioactive molecules containing difluoroethyl aryl ether moiety

    Scheme 2  Two proposed pathways for the Cu catalyzed reaction of aryl bromide (1a) and 2, 2-difluoroethanol (2)

    图 1  ESI-MS experiment on the CuI-catalyzed arylated etherification reaction between m-bromobenzotrifluoride and 2, 2- difluoroethanol

    表 1  Optimization of reaction conditionsa

    Entry Base L Yieldb/%
    1 K3PO4 8-Hydroxyquinoline 0
    2 Cs2CO3 8-Hydroxyquinoline 75
    3 Cs2CO3 1, 10-Phenanthroline Trace
    4 Cs2CO3 Ethyl 2-oxocyclohexane carboxylate Trace
    5 NaOH 8-Hydroxyquinoline 13
    6 C2H5ONa 8-Hydroxyquinoline Trace
    7 KOH 8-Hydroxyquinoline Trace
    8 NaHCO3 8-Hydroxyquinoline Trace
    9 K2HPO4 8-Hydroxyquinoline Trace
    10 KF 8-Hydroxyquinoline Trace
    11 KHCO3 8-Hydroxyquinoline Trace
    12 NaH 8-Hydroxyquinoline Trace
    13 K2CO3 8-Hydroxyquinoline 58
    14 t-BuOK 8-Hydroxyquinoline 100
    a Reaction conditions: 1a (1.0 mmol), 2 (2 mL), base (2 equiv.), CuI (0.1 equiv.) and ligand (0.2 equiv.), 100 ℃ for 12 h. b GC yield.
    下载: 导出CSV

    表 2  CuI/8-Hydroxyquinoine-catalyzed arylated etherification reaction of aryl bromides with 2, 2-difluoroethanol

    下载: 导出CSV

    表 3  CuI/8-Hydroxyquinoine catalyzed coupling reaction of aryl iodides with 2, 2-difluoroethanol

    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  13
  • 文章访问数:  1338
  • HTML全文浏览量:  196
文章相关
  • 发布日期:  2020-07-01
  • 收稿日期:  2020-03-14
  • 修回日期:  2020-04-17
  • 网络出版日期:  2020-04-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章