煤化程度对煤基固体酸结构及其水解纤维素性能的影响

申曙光 李焕梅 王涛 蔡蓓 秦海峰 王春艳

引用本文: 申曙光, 李焕梅, 王涛, 蔡蓓, 秦海峰, 王春艳. 煤化程度对煤基固体酸结构及其水解纤维素性能的影响[J]. 燃料化学学报, 2013, 41(12): 1466-1472. shu
Citation:  SHEN Shu-guang, LI Huan-mei, WANG Tao, CAI Bei, QIN Hai-feng, WANG Chun-yan. Effect of coal rank on structure of coal-based solid acids and their catalytic performance in cellulose hydrolysis[J]. Journal of Fuel Chemistry and Technology, 2013, 41(12): 1466-1472. shu

煤化程度对煤基固体酸结构及其水解纤维素性能的影响

    通讯作者: 申曙光(1969- ),男,山西太原人,博士,副教授,主要能源化工的研究。
  • 基金项目:

    国家自然科学基金(21176169/B061202)。 

摘要: 利用煤具有缩合芳环、脂肪侧链及含氧官能团的结构特点,采用不同煤化程度的煤为碳源,在不同炭化温度下制备了煤基固体酸催化剂(CSA)。通过XRD、FT-IR、13C NMR对催化剂结构进行了表征。以还原糖和葡萄糖的产率为考察指标,探讨了煤化程度和炭化温度对煤基固体酸非均相催化水解纤维素的影响。结果表明,煤作为碳源具有传统碳源所不具备的结构优势,煤基固体酸碳层片上除含有磺酸基、酚羟基和羧基外,还含有传统碳基固体酸不具备的桥键(-O-、-CH2-)和侧链(-CH3、-OCH3、-CH2CH3)。除磺酸基外,其余均由煤的结构演化而来。随着炭化温度的升高,催化剂的芳香度增大、活性基团的种类和数量减少、磺酸基密度逐渐下降,且随着煤化程度增加,煤基固体酸结构可调性降低,所需要的最佳炭化温度也逐渐降低。不同种类的煤基固体酸在水解纤维素过程中表现出了较高的活性,其中,霍林河煤基固体酸的活性最高。水解活性受催化剂芳香片层大小及堆叠高度、片层之间桥键和磺酸基密度等因素的影响,是众多活性基团协同作用的结果。

English

  • 
    1. [1] PARISH L D, FUKUOKA A. Cellulose conversion under heterogeneous[J]. Chemsuschem, 2008, 12: 969-975.[1] PARISH L D, FUKUOKA A. Cellulose conversion under heterogeneous[J]. Chemsuschem, 2008, 12: 969-975.

    2. [2] HARA M, YOSHIDA T, TAKAGAKI A, TAKATA T, KONDO J N, HAYASHI S, DOMEN K. A carbon material as a strong protonic acid[J]. Angew Chem Int Ed, 2004, 43(22): 2955-2958.[2] HARA M, YOSHIDA T, TAKAGAKI A, TAKATA T, KONDO J N, HAYASHI S, DOMEN K. A carbon material as a strong protonic acid[J]. Angew Chem Int Ed, 2004, 43(22): 2955-2958.

    3. [3] TODA M, TAKAGAKI A, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Green chemistry: Biodiesel made with sugar catalyst[J]. Nature, 2005, 438: 178-178.[3] TODA M, TAKAGAKI A, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Green chemistry: Biodiesel made with sugar catalyst[J]. Nature, 2005, 438: 178-178.

    4. [4] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups[J]. J Am Chem Soc, 2008, 130(38): 12787-12793.[4] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH Groups[J]. J Am Chem Soc, 2008, 130(38): 12787-12793.

    5. [5] DEHKHODA A M, WEST A H, ELLIS N. Biochar based solid acid catalyst for biodiesel production[J]. Appl Catal A: Gen, 2010, 382(2): 197-204.[5] DEHKHODA A M, WEST A H, ELLIS N. Biochar based solid acid catalyst for biodiesel production[J]. Appl Catal A: Gen, 2010, 382(2): 197-204.

    6. [6] 乌日娜, 王同华, 修志龙, 郭峰, 潘艳秋, 银建中. 生物质炭基固体酸催化剂的制备[J]. 催化学报, 2009, 30(12): 1203-1208. (WU Ri-na, WANG Tong-hua, XIU Zhi-long, GUO Feng, PAN Yan-qiu, YIN Jian-zhong. Preparation of a biomass carbon-based solid acid catalyst[J]. Chinese Journal of Catalysis, 2009, 30(12): 1203-1208.)[6] 乌日娜, 王同华, 修志龙, 郭峰, 潘艳秋, 银建中. 生物质炭基固体酸催化剂的制备[J]. 催化学报, 2009, 30(12): 1203-1208. (WU Ri-na, WANG Tong-hua, XIU Zhi-long, GUO Feng, PAN Yan-qiu, YIN Jian-zhong. Preparation of a biomass carbon-based solid acid catalyst[J]. Chinese Journal of Catalysis, 2009, 30(12): 1203-1208.)

    7. [7] WU Y Y, FU Z H, YIN D L, XU Q, LIU F L, LU C L, MAO L Q. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chemistry, 2010, 12: 696-700.[7] WU Y Y, FU Z H, YIN D L, XU Q, LIU F L, LU C L, MAO L Q. Microwave-assisted hydrolysis of crystalline cellulose catalyzed by biomass char sulfonic acids[J]. Green Chemistry, 2010, 12: 696-700.

    8. [8] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid[J]. Solid State Sci, 2010, 12(6): 1029-1034.[8] SUGANUMA S, NAKAJIMA K, KITANO M, YAMAGUCHI D, KATO H, HAYASHI S, HARA M. Synthesis and acid catalysis of cellulose-derived carbon-based solid acid[J]. Solid State Sci, 2010, 12(6): 1029-1034.

    9. [9] OKAMURA M, TAKAGAKI A, TODA M, KONDO J N, DOMEN K, TATSUMI T, HAYASHI S, HARA M. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chem Mater, 2006, 18(13): 3039-3045.[9] OKAMURA M, TAKAGAKI A, TODA M, KONDO J N, DOMEN K, TATSUMI T, HAYASHI S, HARA M. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chem Mater, 2006, 18(13): 3039-3045.

    10. [10] WU Y Y, ZHANG C, LIU Y C, FU Z H, DAI B H, YIN D L. Biomass char sulfonic acids(BC-SO3H)-catalyzed hydrolysis of bamboo under microwave irradiation[J]. BioResources, 2012, 7(4): 5950-5959.[10] WU Y Y, ZHANG C, LIU Y C, FU Z H, DAI B H, YIN D L. Biomass char sulfonic acids(BC-SO3H)-catalyzed hydrolysis of bamboo under microwave irradiation[J]. BioResources, 2012, 7(4): 5950-5959.

    11. [11] 周丽娜, 刘可, 华伟明, 乐英红, 高滋. 碳基磺酸化固体酸材料的制备及其催化性能[J]. 催化学报, 2009, 30(3): 196-200. (ZHOU Li-na, LIU Ke, HUA Wei-ming, LE Ying-hong, GAO Zi. Preparation and catalytic performance of sulfonated carbon-based solid acid[J]. Chinese Journal of Catalysis, 2009, 30(3): 196-200. )[11] 周丽娜, 刘可, 华伟明, 乐英红, 高滋. 碳基磺酸化固体酸材料的制备及其催化性能[J]. 催化学报, 2009, 30(3): 196-200. (ZHOU Li-na, LIU Ke, HUA Wei-ming, LE Ying-hong, GAO Zi. Preparation and catalytic performance of sulfonated carbon-based solid acid[J]. Chinese Journal of Catalysis, 2009, 30(3): 196-200. )

    12. [12] ZHANG B H, REN J W, WANG Y Q, GUO Y, GUO Y L, LU G Z, WANG Y Q. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J]. Catal Commun, 2010, 11(7): 629-632.[12] ZHANG B H, REN J W, WANG Y Q, GUO Y, GUO Y L, LU G Z, WANG Y Q. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J]. Catal Commun, 2010, 11(7): 629-632.

    13. [13] VAN DE VYVER S, PENG L, GEBOERS J, SCHEPERS H, CLIPPEL F, GOMMES C J, GODERIS B, JACOBS P A, SELS B F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose[J]. Green chemistry, 2010, 12(9): 1560-1563.[13] VAN DE VYVER S, PENG L, GEBOERS J, SCHEPERS H, CLIPPEL F, GOMMES C J, GODERIS B, JACOBS P A, SELS B F. Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose[J]. Green chemistry, 2010, 12(9): 1560-1563.

    14. [14] MACIA-AGULLO J A, SEVILLA M, DIEZ M A, FUERTES A B. Synthesis of carbon-based solid acid microspheres and their application to the production of biodiesel[J]. ChemSusChem, 2010, 3(12): 1352-1354.[14] MACIA-AGULLO J A, SEVILLA M, DIEZ M A, FUERTES A B. Synthesis of carbon-based solid acid microspheres and their application to the production of biodiesel[J]. ChemSusChem, 2010, 3(12): 1352-1354.

    15. [15] BUDARIN V, CLARK J H, HARDY J J E, LUQUE R, MILKOWSKI K, TAVENER S J, WILSON A. Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties[J]. Angew Chem, 2006, 118: 3866-3870.[15] BUDARIN V, CLARK J H, HARDY J J E, LUQUE R, MILKOWSKI K, TAVENER S J, WILSON A. Starbons: New starch-derived mesoporous carbonaceous materials with tunable properties[J]. Angew Chem, 2006, 118: 3866-3870.

    16. [16] FUKUHARA K, NAKAJIMA K, KITANO M, KATO H, HAYASHI S, HARA M. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups[J]. ChemSusChem, 2011, 4(6): 778-784.[16] FUKUHARA K, NAKAJIMA K, KITANO M, KATO H, HAYASHI S, HARA M. Structure and catalysis of cellulose-derived amorphous carbon bearing SO3H groups[J]. ChemSusChem, 2011, 4(6): 778-784.

    17. [17] KITANO M, YAMAGUCHI D, SUGANUMA S, NAKAJIMA K, KATO H, HAYASHI S, HARA M. Preparation of a sulfonated porous carbon catalyst with high specific surface area[J]. Catal lett, 2009, 131(1/2): 242-249.[17] KITANO M, YAMAGUCHI D, SUGANUMA S, NAKAJIMA K, KATO H, HAYASHI S, HARA M. Preparation of a sulfonated porous carbon catalyst with high specific surface area[J]. Catal lett, 2009, 131(1/2): 242-249.

    18. [18] 王华瑜, 张长斌, 贺泓, 王莲. 磁性碳基磺酸化固体酸催化剂的制备及其催化水解纤维素[J]. 物理化学学报, 2010, 26(7): 1873-1878. (WANG Hua-yu, ZHANG Chang-bin, HE Hong, WANG Lian. Preparation of magnetic sulfonated carbon-based solid acid catalysts for the hydrolysis of cellulose[J]. Acta Physico-Chimica Sinica, 2010, 26(7): 1873-1878.)[18] 王华瑜, 张长斌, 贺泓, 王莲. 磁性碳基磺酸化固体酸催化剂的制备及其催化水解纤维素[J]. 物理化学学报, 2010, 26(7): 1873-1878. (WANG Hua-yu, ZHANG Chang-bin, HE Hong, WANG Lian. Preparation of magnetic sulfonated carbon-based solid acid catalysts for the hydrolysis of cellulose[J]. Acta Physico-Chimica Sinica, 2010, 26(7): 1873-1878.)

    19. [19] NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid brnsted acid catalyst[J]. ACS Catal, 2012, 2(7): 1296-1304.[19] NAKAJIMA K, HARA M. Amorphous carbon with SO3H groups as a solid brnsted acid catalyst[J]. ACS Catal, 2012, 2(7): 1296-1304.

    20. [20] YAMAGUCHI D, HARA M. Synthesis and acid catalysis of cellulose-based solid acid[J]. Solid State Sci, 2010, 12: 1029-1034.[20] YAMAGUCHI D, HARA M. Synthesis and acid catalysis of cellulose-based solid acid[J]. Solid State Sci, 2010, 12: 1029-1034.

    21. [21] FU Z W, WAN H, CUI Q. Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid[J]. React Kinet Mech Cat, 2011, 104(2): 313-321.[21] FU Z W, WAN H, CUI Q. Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid[J]. React Kinet Mech Cat, 2011, 104(2): 313-321.

    22. [22] NILOOFAR T, DAVOODNIA A. Carbon-based solid acid as an efficient and reusable catalyst for one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions[J]. Chinese Journal of Chemistry, 2011, 29(1): 203-206.[22] NILOOFAR T, DAVOODNIA A. Carbon-based solid acid as an efficient and reusable catalyst for one-pot synthesis of tetrasubstituted imidazoles under solvent-free conditions[J]. Chinese Journal of Chemistry, 2011, 29(1): 203-206.

    23. [23] SHU Q, GAO J X, LIAO Y H. Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst[J]. Chinese Journal of Chemical Engineering, 2011, 19(1): 163-168.[23] SHU Q, GAO J X, LIAO Y H. Reaction kinetics of biodiesel synthesis from waste oil using a carbon-based solid acid catalyst[J]. Chinese Journal of Chemical Engineering, 2011, 19(1): 163-168.

    24. [24] LIANG X Z, ZENG M F, QI C Z. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization[J]. Carbon, 2010, 48(6): 1844-1848.[24] LIANG X Z, ZENG M F, QI C Z. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization[J]. Carbon, 2010, 48(6): 1844-1848.

    25. [25] TAKAGAKI A, TODA M, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Esterification of higher fatty acids by a novel strong solid acid[J]. Catal Today, 2006, 116(2): 157-161.[25] TAKAGAKI A, TODA M, OKAMURA M, KONDO J N, HAYASHI S, DOMEN K, HARA M. Esterification of higher fatty acids by a novel strong solid acid[J]. Catal Today, 2006, 116(2): 157-161.

    26. [26] SUGANUMA S, NAKAJIMA K, KITANO M, HAYASHI S, HARA M. sp3-linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst[J]. ChemSusChem, 2012, 5(9): 1841-1846.[26] SUGANUMA S, NAKAJIMA K, KITANO M, HAYASHI S, HARA M. sp3-linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst[J]. ChemSusChem, 2012, 5(9): 1841-1846.

    27. [27] LIANG X Z, XIAO H Q, SHEN Y M, QI C Z. One-step synthesis of novel sulfuric acid groups' functionalized carbon via hydrothermal carbonization[J]. Mater Lett, 2010, 64(8): 953-955.[27] LIANG X Z, XIAO H Q, SHEN Y M, QI C Z. One-step synthesis of novel sulfuric acid groups' functionalized carbon via hydrothermal carbonization[J]. Mater Lett, 2010, 64(8): 953-955.

    28. [28] SUGANUMA S, NAKAJIMA K, KITANO M, KATO H, TAMURA A, KONDO H, YANAGAWA S, HAYASHI S, HARA M. SO3H-bearing mesoporous carbon with highly selective catalysis[J]. Micropor Mesopor Mater, 2011, 143(2/3): 443-450.[28] SUGANUMA S, NAKAJIMA K, KITANO M, KATO H, TAMURA A, KONDO H, YANAGAWA S, HAYASHI S, HARA M. SO3H-bearing mesoporous carbon with highly selective catalysis[J]. Micropor Mesopor Mater, 2011, 143(2/3): 443-450.

    29. [29] 申曙光, 王涛, 秦海峰, 代光, 李焕梅. 不同碳源制备碳基固体酸及其在水解纤维素中的应用[J]. 功能材料, 2012, 12(43): 1598-1601. (SHEN Shu-guang, WANG Tao, QIN Hai-feng, DAI Guang, LI Huan-mei. Synthesis and properties in hydrolytic cellulose of carbon-based solid acids prepared from different carbon sources[J]. Functional materials, 2012, 12(43): 1598-1601.)[29] 申曙光, 王涛, 秦海峰, 代光, 李焕梅. 不同碳源制备碳基固体酸及其在水解纤维素中的应用[J]. 功能材料, 2012, 12(43): 1598-1601. (SHEN Shu-guang, WANG Tao, QIN Hai-feng, DAI Guang, LI Huan-mei. Synthesis and properties in hydrolytic cellulose of carbon-based solid acids prepared from different carbon sources[J]. Functional materials, 2012, 12(43): 1598-1601.)

    30. [30] LIU W Y, LIU N, ZHENG R Y, LI B, ZHANG X, LIANG S J, WANG Z. Coaled carbon-based solid acid: A new and efficient catalyst for click synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions[J]. Adv Mater Res, 2013, 634: 504-507.[30] LIU W Y, LIU N, ZHENG R Y, LI B, ZHANG X, LIANG S J, WANG Z. Coaled carbon-based solid acid: A new and efficient catalyst for click synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions[J]. Adv Mater Res, 2013, 634: 504-507.

    31. [31] YUCHUAN L, HUBER G W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion[J]. Energy Environ Sci, 2009, 2: 68-80.[31] YUCHUAN L, HUBER G W. The critical role of heterogeneous catalysis in lignocellulosic biomass conversion[J]. Energy Environ Sci, 2009, 2: 68-80.

    32. [32] GUO H X, QI X H, LI L Y, RICHARD L. SMITH JR. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid[J]. Bioresour Technol, 2012, 116: 355-359.[32] GUO H X, QI X H, LI L Y, RICHARD L. SMITH JR. Hydrolysis of cellulose over functionalized glucose-derived carbon catalyst in ionic liquid[J]. Bioresour Technol, 2012, 116: 355-359.

    33. [33] ARRIGONE G M, HILTON M. Theory and practice in using fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines[J]. Fuel, 2005, 84(9): 1052-1058.[33] ARRIGONE G M, HILTON M. Theory and practice in using fourier transform infrared spectroscopy to detect hydrocarbons in emissions from gas turbine engines[J]. Fuel, 2005, 84(9): 1052-1058.

    34. [34] JOEL R G, FUJIWARA H, SHARP C R, LOGUSCH W E. Characterization of covalent protein conjugates using solid-state carbon-13 NMR spectroscopy[J]. Biochemistry, 1991, 30(29): 7057-7062.[34] JOEL R G, FUJIWARA H, SHARP C R, LOGUSCH W E. Characterization of covalent protein conjugates using solid-state carbon-13 NMR spectroscopy[J]. Biochemistry, 1991, 30(29): 7057-7062.

    35. [35] CHUANG I S, MACIEL G E. 13C NMR Investigation of the stability of a resol-type phenol-formaldehyde resin toward formalin, toward base, and toward nonoxidizing or oxidizing acid[J]. Macromolecules, 1991, 24(5): 1025-1032.[35] CHUANG I S, MACIEL G E. 13C NMR Investigation of the stability of a resol-type phenol-formaldehyde resin toward formalin, toward base, and toward nonoxidizing or oxidizing acid[J]. Macromolecules, 1991, 24(5): 1025-1032.

    36. [36] NEGRE M, GENNARI M, CRECCHIO C. Effect of ethylene oxide sterilization on soil organic matter, spectroscopic analysis and adsorption of acifluorfen[J]. Soil Sci, 1995, 159(3): 199-206.[36] NEGRE M, GENNARI M, CRECCHIO C. Effect of ethylene oxide sterilization on soil organic matter, spectroscopic analysis and adsorption of acifluorfen[J]. Soil Sci, 1995, 159(3): 199-206.

    37. [37] HAMAGUCHI M, NISHIZAWA T. Quantitative analysis of aromatic carbon types in pitch by fused-state 13C NMR spectroscopy[J]. Fuel, 1992, 71(7): 747-750.[37] HAMAGUCHI M, NISHIZAWA T. Quantitative analysis of aromatic carbon types in pitch by fused-state 13C NMR spectroscopy[J]. Fuel, 1992, 71(7): 747-750.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  585
  • HTML全文浏览量:  47
文章相关
  • 收稿日期:  2013-04-16
  • 网络出版日期:  2013-07-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章