Synthesis of PEGylated hyaluronic acid for loading dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt) in nanoparticles for cancer treatment
English
Synthesis of PEGylated hyaluronic acid for loading dichloro(1,2-diaminocyclohexane)platinum(II) (DACHPt) in nanoparticles for cancer treatment
-
Key words:
- DACHPt
- / PEGylated hyaluronan
- / A549 lung cancer cell
-
-
-
[1] S. Carrick, D. Ghersi, N. Wilcken, J. Simes, Platinum containing regimens for metastatic breast cancer, Cochrane Database Syst. Rev. (2004) CD003374, http://dx.doi.org/10.1002/14651858.CD003374.pub3.[1] S. Carrick, D. Ghersi, N. Wilcken, J. Simes, Platinum containing regimens for metastatic breast cancer, Cochrane Database Syst. Rev. (2004) CD003374, http://dx.doi.org/10.1002/14651858.CD003374.pub3.
-
[2] G. Chu, Cellular-responses to cisplatin—the roles of DNA-binding proteins and DNA-repair, J. Biol. Chem. 269 (1994) 787-790.[2] G. Chu, Cellular-responses to cisplatin—the roles of DNA-binding proteins and DNA-repair, J. Biol. Chem. 269 (1994) 787-790.
-
[3] D.C. Ihde, J.L. Mulshine, B.S. Kramer, et al., Prospective randomized comparison of high-dose and standard-dose etoposide and cisplatin chemotherapy in patients with extensive-stage small-cell lung-cancer, J. Clin. Oncol. 12 (1994) 2022-2034.[3] D.C. Ihde, J.L. Mulshine, B.S. Kramer, et al., Prospective randomized comparison of high-dose and standard-dose etoposide and cisplatin chemotherapy in patients with extensive-stage small-cell lung-cancer, J. Clin. Oncol. 12 (1994) 2022-2034.
-
[4] R.P. Perng, Y.M. Chen, M. Lu, et al., Gemcitabine versus the combination of cisplatin and etoposide in patients with inoperable non-small-cell lung cancer in a phase II randomized study, J. Clin. Oncol. 15 (1997) 2097-2102.[4] R.P. Perng, Y.M. Chen, M. Lu, et al., Gemcitabine versus the combination of cisplatin and etoposide in patients with inoperable non-small-cell lung cancer in a phase II randomized study, J. Clin. Oncol. 15 (1997) 2097-2102.
-
[5] B. Desoize, C. Madoulet, Particular aspects of platinum compounds used at present in cancer treatment, Crit. Rev. Oncol. Hematol. 42 (2002) 317-325.[5] B. Desoize, C. Madoulet, Particular aspects of platinum compounds used at present in cancer treatment, Crit. Rev. Oncol. Hematol. 42 (2002) 317-325.
-
[6] Y. Kidani, K. Inagaki, M. Iigo, A. Hoshi, K. Kuretani, Antitumor activity of 1,2-diaminocyclohexane-platinum complexes against sarcoma-180 ascites form, J. Med. Chem. 21 (1978) 1315-1318.[6] Y. Kidani, K. Inagaki, M. Iigo, A. Hoshi, K. Kuretani, Antitumor activity of 1,2-diaminocyclohexane-platinum complexes against sarcoma-180 ascites form, J. Med. Chem. 21 (1978) 1315-1318.
-
[7] H. Cabral, N. Nishiyama, S. Okazaki, H. Koyama, K. Kataoka, Preparation and biological properties of dichloro(1,2-diaminocyclo-hexane) platinum (II)(DACHPt)-loaded polymeric micelles, J. Control. Release 101 (2005) 223-232.[7] H. Cabral, N. Nishiyama, S. Okazaki, H. Koyama, K. Kataoka, Preparation and biological properties of dichloro(1,2-diaminocyclo-hexane) platinum (II)(DACHPt)-loaded polymeric micelles, J. Control. Release 101 (2005) 223-232.
-
[8] H. Cabral, N. Nishiyama, K. Kataoka, Optimization of (1,2-diamino-cyclohexane)-platinum(II)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity, J. Control. Release 121 (2007) 146-155.[8] H. Cabral, N. Nishiyama, K. Kataoka, Optimization of (1,2-diamino-cyclohexane)-platinum(II)-loaded polymeric micelles directed to improved tumor targeting and enhanced antitumor activity, J. Control. Release 121 (2007) 146-155.
-
[9] M. Murakami, H. Cabral, Y. Matsumoto, et al., Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting, Sci. Transl. Med. 3 (2011) 64ra2.[9] M. Murakami, H. Cabral, Y. Matsumoto, et al., Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting, Sci. Transl. Med. 3 (2011) 64ra2.
-
[10] H. Cabral, Y. Matsumoto, K. Mizuno, et al., Accumulation of sub-100 nmpolymeric micelles in poorly permeable tumours depends on size, Nat. Nanotechnol. 6 (2011) 815-823.[10] H. Cabral, Y. Matsumoto, K. Mizuno, et al., Accumulation of sub-100 nmpolymeric micelles in poorly permeable tumours depends on size, Nat. Nanotechnol. 6 (2011) 815-823.
-
[11] M. Rafi, H. Cabral, M. Kano, et al., Polymeric micelles incorporating (1,2-diaminocyclohexane) platinum(II) suppress the growth of orthotopic scirrhous gastric tumors and their lymph node metastasis, J. Control. Release 159 (2012) 189-196.[11] M. Rafi, H. Cabral, M. Kano, et al., Polymeric micelles incorporating (1,2-diaminocyclohexane) platinum(II) suppress the growth of orthotopic scirrhous gastric tumors and their lymph node metastasis, J. Control. Release 159 (2012) 189-196.
-
[12] H. Cabral, M. Murakami, H. Hojo, et al., Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 11397-11402.[12] H. Cabral, M. Murakami, H. Hojo, et al., Targeted therapy of spontaneous murine pancreatic tumors by polymeric micelles prolongs survival and prevents peritoneal metastasis, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 11397-11402.
-
[13] S. Deshayes, H. Cabral, T. Ishii, et al., Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors, J. Am. Chem. Soc. 135 (2013) 15501-15507.[13] S. Deshayes, H. Cabral, T. Ishii, et al., Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors, J. Am. Chem. Soc. 135 (2013) 15501-15507.
-
[14] J.R. Fraser, T.C. Laurent, Turnover and metabolism of hyaluronan, Ciba Found. Symp. 143 (1989) 41-53 (discussion 53-59, 281-285).[14] J.R. Fraser, T.C. Laurent, Turnover and metabolism of hyaluronan, Ciba Found. Symp. 143 (1989) 41-53 (discussion 53-59, 281-285).
-
[15] C.B. Knudson, W. Knudson, Hyaluronan-binding proteins in development, tissue homeostasis, and disease, FASEB J. 7 (1993) 1233-1241.[15] C.B. Knudson, W. Knudson, Hyaluronan-binding proteins in development, tissue homeostasis, and disease, FASEB J. 7 (1993) 1233-1241.
-
[16] J. Entwistle, C.L. Hall, E.A. Turley, HA receptors: regulators of signaling to the cytoskeleton, J. Cell. Biochem. 61 (1996) 569-577.[16] J. Entwistle, C.L. Hall, E.A. Turley, HA receptors: regulators of signaling to the cytoskeleton, J. Cell. Biochem. 61 (1996) 569-577.
-
[17] T.C. Laurent, Biochemistry of hyaluronan, Acta Otolaryngol. 442 (1987) 7-24.[17] T.C. Laurent, Biochemistry of hyaluronan, Acta Otolaryngol. 442 (1987) 7-24.
-
[18] K. Akima, H. Ito, Y. Iwata, et al., Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity, J. Drug Target. 4 (1996) 1-9.[18] K. Akima, H. Ito, Y. Iwata, et al., Evaluation of antitumor activities of hyaluronate binding antitumor drugs: synthesis, characterization and antitumor activity, J. Drug Target. 4 (1996) 1-9.
-
[19] Q. Hua, C.B. Knudson, W.J. Knudson, Internalization of hyaluronan by chondrocytes occurs via receptor mediated endocytosis, J. Cell Sci. 106 (1993) 365-375.[19] Q. Hua, C.B. Knudson, W.J. Knudson, Internalization of hyaluronan by chondrocytes occurs via receptor mediated endocytosis, J. Cell Sci. 106 (1993) 365-375.
-
[20] V. Mironov, G.D. Prestwich, Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel, Biomaterials 26 (2005) 7628-7635.[20] V. Mironov, G.D. Prestwich, Fabrication of tubular tissue constructs by centrifugal casting of cells suspended in an in situ crosslinkable hyaluronan-gelatin hydrogel, Biomaterials 26 (2005) 7628-7635.
-
[21] M. Kurisawa, H. Uyama, Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering, Chem. Commun. 34 (2005) 4312-4314.[21] M. Kurisawa, H. Uyama, Injectable biodegradable hydrogels composed of hyaluronic acid-tyramine conjugates for drug delivery and tissue engineering, Chem. Commun. 34 (2005) 4312-4314.
-
[22] K. Avgoustakis, A. Beletsi, Z. Panagi, et al., PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vivo drug release and in vivo drug residence in blood properties, J. Control. Release 79 (2001) 123-135.[22] K. Avgoustakis, A. Beletsi, Z. Panagi, et al., PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vivo drug release and in vivo drug residence in blood properties, J. Control. Release 79 (2001) 123-135.
-
[23] M.S. Newman, G.T. Colbern, P.K. Working, C. Engbers, M.A. Amantea, Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long circulating, pegylated liposomes (SPI-077) in tumor-bearing mice, Cancer Chemother. Pharmacol. 43 (1999) 1-7.[23] M.S. Newman, G.T. Colbern, P.K. Working, C. Engbers, M.A. Amantea, Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long circulating, pegylated liposomes (SPI-077) in tumor-bearing mice, Cancer Chemother. Pharmacol. 43 (1999) 1-7.
-
[24] Y. Ohya, T. Masunaga, T. Baba, T. Ouchi, Synthesis and cytotoxic activity of dextran carrying cis-dichloro (cyclohexanetrans-l-1,2-diamine) platinum(II) complex, J. Biomater. Sci. Polym. Ed. 7 (1996) 1085-1096.[24] Y. Ohya, T. Masunaga, T. Baba, T. Ouchi, Synthesis and cytotoxic activity of dextran carrying cis-dichloro (cyclohexanetrans-l-1,2-diamine) platinum(II) complex, J. Biomater. Sci. Polym. Ed. 7 (1996) 1085-1096.
-
[25] N. Nishiyama, K. Kataoka, Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiamine-platinium(II) in the core, J. Control. Release 74 (2001) 83-94.[25] N. Nishiyama, K. Kataoka, Preparation and characterization of size-controlled polymeric micelle containing cis-dichlorodiamine-platinium(II) in the core, J. Control. Release 74 (2001) 83-94.
-
[26] N. Nishiyama, S. Okazaki, H. Cabral, et al., Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice, Cancer Res. 63 (2003) 8977-8983.[26] N. Nishiyama, S. Okazaki, H. Cabral, et al., Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice, Cancer Res. 63 (2003) 8977-8983.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1353
- HTML全文浏览量: 44

下载: