Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities
English
Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities
-
Key words:
- Synthesis
- / Anti-tumor agents
- / Histone deacetylase inhibitors
- / N-Hydroxyarylamides
- / Click chemistry
-
-
-
[1] Z. Li, W.G. Zhu, Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications, Int. J. Biol. Sci. 10 (2014) 757-770.[1] Z. Li, W.G. Zhu, Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications, Int. J. Biol. Sci. 10 (2014) 757-770.
-
[2] C.B. Yoo, P.A. Jones, Epigenetic therapy of cancer: past, present and future, Nat. Rev. Drug Discov. 5 (2006) 37-50.[2] C.B. Yoo, P.A. Jones, Epigenetic therapy of cancer: past, present and future, Nat. Rev. Drug Discov. 5 (2006) 37-50.
-
[3] L. Simó-Riudalbas, M. Esteller, Targeting the histone orthography of cancer: drugs for writers, erasers and readers, Br, J. Pharmacol. 172 (2015) 2716-2732.[3] L. Simó-Riudalbas, M. Esteller, Targeting the histone orthography of cancer: drugs for writers, erasers and readers, Br, J. Pharmacol. 172 (2015) 2716-2732.
-
[4] H. Lehrmann, L.L. Pritchard, A. Harel-Bellan, et al., Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation, Adv. Cancer Res. 86 (2002) 41-65.[4] H. Lehrmann, L.L. Pritchard, A. Harel-Bellan, et al., Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation, Adv. Cancer Res. 86 (2002) 41-65.
-
[5] B.E. Bernstein, J.K. Tong, S.L. Schreiber, Genome wide studies of histone deacetylase function in yeast, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13708-13713.[5] B.E. Bernstein, J.K. Tong, S.L. Schreiber, Genome wide studies of histone deacetylase function in yeast, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13708-13713.
-
[6] O. Witt, H.E. Deubzer, T. Milde, I. Oehme, et al., HDAC family: what are the cancer relevant targets, Cancer Lett. 277 (2009) 8-21.[6] O. Witt, H.E. Deubzer, T. Milde, I. Oehme, et al., HDAC family: what are the cancer relevant targets, Cancer Lett. 277 (2009) 8-21.
-
[7] P. Bose, Y. Dai, S. Grant, Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights, Pharmacol. Ther. 143 (2014) 323-336.[7] P. Bose, Y. Dai, S. Grant, Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights, Pharmacol. Ther. 143 (2014) 323-336.
-
[8] A.C. West, R.W. Johnstone, New and emerging HDAC inhibitors for cancer treatment, J. Clin. Invest. 124 (2014) 30-39.[8] A.C. West, R.W. Johnstone, New and emerging HDAC inhibitors for cancer treatment, J. Clin. Invest. 124 (2014) 30-39.
-
[9] M. Slingerland, H.J. Guchelaar, H. Gelderblom, Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors, Anticancer Drugs 25 (2014) 140-149.[9] M. Slingerland, H.J. Guchelaar, H. Gelderblom, Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors, Anticancer Drugs 25 (2014) 140-149.
-
[10] P.A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene 26 (2007) 1351-1356.[10] P.A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene 26 (2007) 1351-1356.
-
[11] FK228: http://www.fda.gov/NewsEvents/Newsroom/Press Announcements/2009/ucm189629.htm.[11] FK228: http://www.fda.gov/NewsEvents/Newsroom/Press Announcements/2009/ucm189629.htm.
-
[12] T. Qiu, L. Zhou, W. Zhu, et al., Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials, Future Oncol. 9 (2013) 255-269.[12] T. Qiu, L. Zhou, W. Zhu, et al., Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials, Future Oncol. 9 (2013) 255-269.
-
[13] T. You, K. Chen, F.H. Wang, et al., Design, synthesis, and biological evaluation of Nhydroxycinnamamide/salicylic acid hybrids as histone deacetylase inhibitors, Chin. Chem. Lett. 25 (2014) 474-478.[13] T. You, K. Chen, F.H. Wang, et al., Design, synthesis, and biological evaluation of Nhydroxycinnamamide/salicylic acid hybrids as histone deacetylase inhibitors, Chin. Chem. Lett. 25 (2014) 474-478.
-
[14] T.A. Miller, D.J. Witter, S. Belvedere, Histone deacetylase inhibitors, J. Med. Chem. 46 (2003) 5097-5116.[14] T.A. Miller, D.J. Witter, S. Belvedere, Histone deacetylase inhibitors, J. Med. Chem. 46 (2003) 5097-5116.
-
[15] P.A. Marks, The clinical development of histone deacetylase inhibitors as targeted anticancer drugs, Expert Opin. Invest. Drugs 19 (2010) 1049-1066.[15] P.A. Marks, The clinical development of histone deacetylase inhibitors as targeted anticancer drugs, Expert Opin. Invest. Drugs 19 (2010) 1049-1066.
-
[16] J. McDermott, A. Jimeno, Belinostat for the treatment of peripheral T-cell lymphomas, Drugs Today (Barc.) 50 (2014) 337-345.[16] J. McDermott, A. Jimeno, Belinostat for the treatment of peripheral T-cell lymphomas, Drugs Today (Barc.) 50 (2014) 337-345.
-
[17] W.P. Yong, B.C. Goh, R.A. Soo, et al., Phase I and pharmacodynamic study of an orally administered novel inhibitor of histone deacetylases, SB939, in patients with refractory solid malignancies, Ann. Oncol. 22 (2011) 2516-2522.[17] W.P. Yong, B.C. Goh, R.A. Soo, et al., Phase I and pharmacodynamic study of an orally administered novel inhibitor of histone deacetylases, SB939, in patients with refractory solid malignancies, Ann. Oncol. 22 (2011) 2516-2522.
-
[18] J.S. de Bono, R. Kristeleit, A. Tolcher, et al., Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors, Clin. Cancer Res. 14 (2008) 6663-6673.[18] J.S. de Bono, R. Kristeleit, A. Tolcher, et al., Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors, Clin. Cancer Res. 14 (2008) 6663-6673.
-
[19] S. Fouliard, R. Robert, A. Jacquet-Bescond, et al., Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I, Eur. J. Cancer 49 (2013) 2791-2797.[19] S. Fouliard, R. Robert, A. Jacquet-Bescond, et al., Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I, Eur. J. Cancer 49 (2013) 2791-2797.
-
[20] A. Furlan, V. Monzani, L.L. Reznikov, et al., Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat), Mol. Med. 17 (2011) 353-362.[20] A. Furlan, V. Monzani, L.L. Reznikov, et al., Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat), Mol. Med. 17 (2011) 353-362.
-
[21] Ø. Bruserud, C. Stapnes, E. Ersvaer, et al., Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell, Curr. Pharm. Biotechnol. 8 (2007) 388-400.[21] Ø. Bruserud, C. Stapnes, E. Ersvaer, et al., Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell, Curr. Pharm. Biotechnol. 8 (2007) 388-400.
-
[22] J. Amato, N. Iaccarino, B. Pagano, et al., Bis-indole derivatives with antitumor activity turn out to be specific ligands of human telomeric G-quadruplex, Front. Chem. 2 (2014) 54.[22] J. Amato, N. Iaccarino, B. Pagano, et al., Bis-indole derivatives with antitumor activity turn out to be specific ligands of human telomeric G-quadruplex, Front. Chem. 2 (2014) 54.
-
[23] M.T. Macdonough, T.E. Strecker, E. Hamel, et al., Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(30-hydroxy-40-methoxyphenyl)-3-(300,400,500-trimethoxybenzoyl)-6-methoxyindole (OXi8006), Bioorg. Med. Chem. 21 (2013) 6831-6843.[23] M.T. Macdonough, T.E. Strecker, E. Hamel, et al., Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(30-hydroxy-40-methoxyphenyl)-3-(300,400,500-trimethoxybenzoyl)-6-methoxyindole (OXi8006), Bioorg. Med. Chem. 21 (2013) 6831-6843.
-
[24] Y.S. Cho, L. Whitehead, J. Li, et al., Conformational refinement of hydroxamatebased histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824), J. Med. Chem. 53 (2010) 2952-2963.[24] Y.S. Cho, L. Whitehead, J. Li, et al., Conformational refinement of hydroxamatebased histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824), J. Med. Chem. 53 (2010) 2952-2963.
-
[25] C.D. Hein, X.M. Liu, D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences, Pharm. Res. 25 (2008) 2216-2230.[25] C.D. Hein, X.M. Liu, D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences, Pharm. Res. 25 (2008) 2216-2230.
-
[26] G.C. Tron, T. Pirali, R.A. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev. 28 (2008) 278-308.[26] G.C. Tron, T. Pirali, R.A. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev. 28 (2008) 278-308.
-
[27] A.R. Bogdan, K. James, Efficient access to new chemical space through flowconstruction of druglike macrocycles through copper-surface-catalyzed azidealkyne cycloaddition reactions, Chemistry 16 (2010) 14506-14512.[27] A.R. Bogdan, K. James, Efficient access to new chemical space through flowconstruction of druglike macrocycles through copper-surface-catalyzed azidealkyne cycloaddition reactions, Chemistry 16 (2010) 14506-14512.
-
[28] The data of selected compounds: 8c: Yield: 86%, mp 116-119℃; ESI-MSm/z: 390[M+H]+. 1H NMR (300 MHz, DMSO-d6):δ5.31 (s, 2H), 5.43 (s, 2H), 6.55 (d, 1H, J = 15.9 Hz), 6.96-6.99 (m, 2H), 7.08-7.11 (m, 2H), 7.15 (d, 1H, J = 2.4 Hz), 7.35 (m, 1H), 7.57 (d, 1H, J = 7.8 Hz), 7.63-7.68 (m, 3H), 7.79 (s, 1H), 8.96 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.5, 71.2, 107.4, 111.8, 115.6, 118.2, 118.5, 119.3, 120.7, 122.7, 123.1, 127.1, 130.5, 136.0, 139.2, 146.3, 155.1, 164.6. ESIHRMS (m/z): [M+H]+ calcd. for C21H20N5O3: 390.1566; found: 390.1558. 8d: Yield: 83%, mp 123-125℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.81 (s, 3H), 5.29 (s, 2H), 5.50 (s, 2H), 6.53 (d, 1H, J = 15.9 Hz), 6.94-6.97 (m, 3H), 7.08-7.10 (m, 2H), 7.15-7.21 (m, 3H), 7.33 (d, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.62 (d, 1H, J = 15.9 Hz), 7.77 (s, 1H), 8.91 (s, 1H), 10.35 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.0, 56.3, 71.5, 107.7, 110.7, 111.6, 114.4, 118.3, 118.9, 119.5, 121.0, 122.9, 123.3, 127.6, 136.3, 138.9, 146.2, 146.5, 154.8, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1665. 8i: Yield: 89%, mp 105-108℃; ESI-MS m/z: 434 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ2.61 (t, 2H, J = 6.6 Hz), 3.37 (t, 2H, J = 6.6 Hz), 3.83 (s, 3H), 5.33 (s, 2H), 6.56 (d, 1H, J = 15.9 Hz), 6.92-6.98 (m, 3H), 7.09-7.12 (m, 2H), 7.17-7.22 (m, 3H), 7.35 (d, 1H, J = 7.8 Hz), 7.57 (d, 1H, J = 7.8 Hz), 7.65 (d, 1H, J = 15.9 Hz), 7.80 (s, 1H), 8.95 (s, 1H), 10.39 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ28.1, 50.3, 56.5, 71.3, 106.9, 110.5, 111.3, 114.5, 117.8, 118.5, 119.2, 120.7, 122.5, 123.1, 127.3, 136.3, 138.9, 146.2, 146.7, 155.1, 164.9. ESI-HRMS (m/z):[M+H]+ calcd. for C23H24N5O4: 434.1828; found: 434.1842. 8m: Yield: 82%, mp 121-124℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.80 (s, 3H), 5.30 (s, 2H), 5.46 (s, 2H), 6.52 (d, 1H, J = 15.9 Hz), 6.76 (m, 1H), 6.96 (d, 2H, J = 8.4 Hz), 7.11-7.15 (m, 2H), 7.22 (d, 1H, J = 7.8 Hz), 7.61-7.66 (m, 3H), 7.75 (s, 1H), 8.87 (s, 1H), 10.25 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.1, 56.8, 71.5, 102.1, 111.9, 112.2, 115.5, 118.4, 122.6, 123.3, 128.3, 129.1, 130.1, 138.9, 146.2, 146.6, 155.3, 165.1. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1681. 8n: Yield: 85%, mp 110-112℃; ESI-MS m/z: 450 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.83 (s, 6H), 5.35 (s, 2H), 5.53 (s, 2H), 6.57 (d, 1H, J = 15.9 Hz), 6.79 (m, 1H), 6.95-7.00 (m, 3H), 7.12-7.23 (m, 5H), 7.65 (d, 1H, J = 15.9 Hz), 7.81 (s, 1H), 8.97 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.3, 56.8, 71.6, 101.9, 110.3, 111.1, 112.1, 112.7, 118.5, 122.5, 123.2, 128.9, 129.3, 130.4, 138.7, 146.2, 146.4, 146.8, 154.7, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C23H24N5O5: 450.1777; found: 450.1786. 8o: Yield: 83%, mp 118-120℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.79 (s, 3H), 5.32 (s, 2H), 5.45 (s, 2H), 6.50 (d, 1H, J = 15.9 Hz), 6.88-6.93 (m, 2H), 7.09-7.17 (m, 4H), 7.24 (d, 1H, J = 7.8 Hz), 7.53 (m, 1H), 7.62 (d, 1H, J = 15.9 Hz), 7.73 (s, 1H), 8.82 (s, 1H), 10.33 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.8, 71.5, 102.0, 112.0, 112.4, 114.7, 118.5, 122.7, 123.1, 128.0, 128.5, 130.2, 137.6, 146.2, 146.4, 155.3, 164.9. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1659.[28] The data of selected compounds: 8c: Yield: 86%, mp 116-119℃; ESI-MSm/z: 390[M+H]+. 1H NMR (300 MHz, DMSO-d6):δ5.31 (s, 2H), 5.43 (s, 2H), 6.55 (d, 1H, J = 15.9 Hz), 6.96-6.99 (m, 2H), 7.08-7.11 (m, 2H), 7.15 (d, 1H, J = 2.4 Hz), 7.35 (m, 1H), 7.57 (d, 1H, J = 7.8 Hz), 7.63-7.68 (m, 3H), 7.79 (s, 1H), 8.96 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.5, 71.2, 107.4, 111.8, 115.6, 118.2, 118.5, 119.3, 120.7, 122.7, 123.1, 127.1, 130.5, 136.0, 139.2, 146.3, 155.1, 164.6. ESIHRMS (m/z): [M+H]+ calcd. for C21H20N5O3: 390.1566; found: 390.1558. 8d: Yield: 83%, mp 123-125℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.81 (s, 3H), 5.29 (s, 2H), 5.50 (s, 2H), 6.53 (d, 1H, J = 15.9 Hz), 6.94-6.97 (m, 3H), 7.08-7.10 (m, 2H), 7.15-7.21 (m, 3H), 7.33 (d, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.62 (d, 1H, J = 15.9 Hz), 7.77 (s, 1H), 8.91 (s, 1H), 10.35 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.0, 56.3, 71.5, 107.7, 110.7, 111.6, 114.4, 118.3, 118.9, 119.5, 121.0, 122.9, 123.3, 127.6, 136.3, 138.9, 146.2, 146.5, 154.8, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1665. 8i: Yield: 89%, mp 105-108℃; ESI-MS m/z: 434 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ2.61 (t, 2H, J = 6.6 Hz), 3.37 (t, 2H, J = 6.6 Hz), 3.83 (s, 3H), 5.33 (s, 2H), 6.56 (d, 1H, J = 15.9 Hz), 6.92-6.98 (m, 3H), 7.09-7.12 (m, 2H), 7.17-7.22 (m, 3H), 7.35 (d, 1H, J = 7.8 Hz), 7.57 (d, 1H, J = 7.8 Hz), 7.65 (d, 1H, J = 15.9 Hz), 7.80 (s, 1H), 8.95 (s, 1H), 10.39 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ28.1, 50.3, 56.5, 71.3, 106.9, 110.5, 111.3, 114.5, 117.8, 118.5, 119.2, 120.7, 122.5, 123.1, 127.3, 136.3, 138.9, 146.2, 146.7, 155.1, 164.9. ESI-HRMS (m/z):[M+H]+ calcd. for C23H24N5O4: 434.1828; found: 434.1842. 8m: Yield: 82%, mp 121-124℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.80 (s, 3H), 5.30 (s, 2H), 5.46 (s, 2H), 6.52 (d, 1H, J = 15.9 Hz), 6.76 (m, 1H), 6.96 (d, 2H, J = 8.4 Hz), 7.11-7.15 (m, 2H), 7.22 (d, 1H, J = 7.8 Hz), 7.61-7.66 (m, 3H), 7.75 (s, 1H), 8.87 (s, 1H), 10.25 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.1, 56.8, 71.5, 102.1, 111.9, 112.2, 115.5, 118.4, 122.6, 123.3, 128.3, 129.1, 130.1, 138.9, 146.2, 146.6, 155.3, 165.1. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1681. 8n: Yield: 85%, mp 110-112℃; ESI-MS m/z: 450 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.83 (s, 6H), 5.35 (s, 2H), 5.53 (s, 2H), 6.57 (d, 1H, J = 15.9 Hz), 6.79 (m, 1H), 6.95-7.00 (m, 3H), 7.12-7.23 (m, 5H), 7.65 (d, 1H, J = 15.9 Hz), 7.81 (s, 1H), 8.97 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.3, 56.8, 71.6, 101.9, 110.3, 111.1, 112.1, 112.7, 118.5, 122.5, 123.2, 128.9, 129.3, 130.4, 138.7, 146.2, 146.4, 146.8, 154.7, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C23H24N5O5: 450.1777; found: 450.1786. 8o: Yield: 83%, mp 118-120℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.79 (s, 3H), 5.32 (s, 2H), 5.45 (s, 2H), 6.50 (d, 1H, J = 15.9 Hz), 6.88-6.93 (m, 2H), 7.09-7.17 (m, 4H), 7.24 (d, 1H, J = 7.8 Hz), 7.53 (m, 1H), 7.62 (d, 1H, J = 15.9 Hz), 7.73 (s, 1H), 8.82 (s, 1H), 10.33 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.8, 71.5, 102.0, 112.0, 112.4, 114.7, 118.5, 122.7, 123.1, 128.0, 128.5, 130.2, 137.6, 146.2, 146.4, 155.3, 164.9. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1659.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1210
- HTML全文浏览量: 24

下载: