Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities

Mao Cai Jie Hu Ji-Lai Tian Huang Yan Chen-Guo Zheng Wan-Le Hu

Citation:  Mao Cai, Jie Hu, Ji-Lai Tian, Huang Yan, Chen-Guo Zheng, Wan-Le Hu. Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities[J]. Chinese Chemical Letters, 2015, 26(6): 675-680. doi: 10.1016/j.cclet.2015.03.015 shu

Novel hybrids from N-hydroxyarylamide and indole ring through click chemistry as histone deacetylase inhibitors with potent antitumor activities

    通讯作者: Wan-Le Hu,
摘要: Novel hybrid molecules 8a-8o were designed and synthesized by connecting indole ring with N-hydroxyarylamide through alkyl substituted triazole, and their in vitro biological activities were evaluated. It was discovered that most of target compounds showed promising anticancer activities, particularly for 8n, which had a significant HDACs inhibitory and antiproliferative activities comparable to or slightly stronger than SAHA against human carcinoma cells. Furthermore, compound 8n exhibited much better selectivity for HDAC1 over HDAC6 and HDAC8 than SAHA. In addition, compound 8n also could dose-dependently induce cancer cell cycling arrest at G0/G1 phase and promote the expression of the acetylation for histone H3 and tubulin in vitro. Therefore, our novel findings may provide a new framework for the design of new selective HDAC inhibitor for the treatment of cancer.

English

  • 
    1. [1] Z. Li, W.G. Zhu, Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications, Int. J. Biol. Sci. 10 (2014) 757-770.[1] Z. Li, W.G. Zhu, Targeting histone deacetylases for cancer therapy: from molecular mechanisms to clinical implications, Int. J. Biol. Sci. 10 (2014) 757-770.

    2. [2] C.B. Yoo, P.A. Jones, Epigenetic therapy of cancer: past, present and future, Nat. Rev. Drug Discov. 5 (2006) 37-50.[2] C.B. Yoo, P.A. Jones, Epigenetic therapy of cancer: past, present and future, Nat. Rev. Drug Discov. 5 (2006) 37-50.

    3. [3] L. Simó-Riudalbas, M. Esteller, Targeting the histone orthography of cancer: drugs for writers, erasers and readers, Br, J. Pharmacol. 172 (2015) 2716-2732.[3] L. Simó-Riudalbas, M. Esteller, Targeting the histone orthography of cancer: drugs for writers, erasers and readers, Br, J. Pharmacol. 172 (2015) 2716-2732.

    4. [4] H. Lehrmann, L.L. Pritchard, A. Harel-Bellan, et al., Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation, Adv. Cancer Res. 86 (2002) 41-65.[4] H. Lehrmann, L.L. Pritchard, A. Harel-Bellan, et al., Histone acetyltransferases and deacetylases in the control of cell proliferation and differentiation, Adv. Cancer Res. 86 (2002) 41-65.

    5. [5] B.E. Bernstein, J.K. Tong, S.L. Schreiber, Genome wide studies of histone deacetylase function in yeast, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13708-13713.[5] B.E. Bernstein, J.K. Tong, S.L. Schreiber, Genome wide studies of histone deacetylase function in yeast, Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13708-13713.

    6. [6] O. Witt, H.E. Deubzer, T. Milde, I. Oehme, et al., HDAC family: what are the cancer relevant targets, Cancer Lett. 277 (2009) 8-21.[6] O. Witt, H.E. Deubzer, T. Milde, I. Oehme, et al., HDAC family: what are the cancer relevant targets, Cancer Lett. 277 (2009) 8-21.

    7. [7] P. Bose, Y. Dai, S. Grant, Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights, Pharmacol. Ther. 143 (2014) 323-336.[7] P. Bose, Y. Dai, S. Grant, Histone deacetylase inhibitor (HDACI) mechanisms of action: emerging insights, Pharmacol. Ther. 143 (2014) 323-336.

    8. [8] A.C. West, R.W. Johnstone, New and emerging HDAC inhibitors for cancer treatment, J. Clin. Invest. 124 (2014) 30-39.[8] A.C. West, R.W. Johnstone, New and emerging HDAC inhibitors for cancer treatment, J. Clin. Invest. 124 (2014) 30-39.

    9. [9] M. Slingerland, H.J. Guchelaar, H. Gelderblom, Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors, Anticancer Drugs 25 (2014) 140-149.[9] M. Slingerland, H.J. Guchelaar, H. Gelderblom, Histone deacetylase inhibitors: an overview of the clinical studies in solid tumors, Anticancer Drugs 25 (2014) 140-149.

    10. [10] P.A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene 26 (2007) 1351-1356.[10] P.A. Marks, Discovery and development of SAHA as an anticancer agent, Oncogene 26 (2007) 1351-1356.

    11. [11] FK228: http://www.fda.gov/NewsEvents/Newsroom/Press Announcements/2009/ucm189629.htm.[11] FK228: http://www.fda.gov/NewsEvents/Newsroom/Press Announcements/2009/ucm189629.htm.

    12. [12] T. Qiu, L. Zhou, W. Zhu, et al., Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials, Future Oncol. 9 (2013) 255-269.[12] T. Qiu, L. Zhou, W. Zhu, et al., Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials, Future Oncol. 9 (2013) 255-269.

    13. [13] T. You, K. Chen, F.H. Wang, et al., Design, synthesis, and biological evaluation of Nhydroxycinnamamide/salicylic acid hybrids as histone deacetylase inhibitors, Chin. Chem. Lett. 25 (2014) 474-478.[13] T. You, K. Chen, F.H. Wang, et al., Design, synthesis, and biological evaluation of Nhydroxycinnamamide/salicylic acid hybrids as histone deacetylase inhibitors, Chin. Chem. Lett. 25 (2014) 474-478.

    14. [14] T.A. Miller, D.J. Witter, S. Belvedere, Histone deacetylase inhibitors, J. Med. Chem. 46 (2003) 5097-5116.[14] T.A. Miller, D.J. Witter, S. Belvedere, Histone deacetylase inhibitors, J. Med. Chem. 46 (2003) 5097-5116.

    15. [15] P.A. Marks, The clinical development of histone deacetylase inhibitors as targeted anticancer drugs, Expert Opin. Invest. Drugs 19 (2010) 1049-1066.[15] P.A. Marks, The clinical development of histone deacetylase inhibitors as targeted anticancer drugs, Expert Opin. Invest. Drugs 19 (2010) 1049-1066.

    16. [16] J. McDermott, A. Jimeno, Belinostat for the treatment of peripheral T-cell lymphomas, Drugs Today (Barc.) 50 (2014) 337-345.[16] J. McDermott, A. Jimeno, Belinostat for the treatment of peripheral T-cell lymphomas, Drugs Today (Barc.) 50 (2014) 337-345.

    17. [17] W.P. Yong, B.C. Goh, R.A. Soo, et al., Phase I and pharmacodynamic study of an orally administered novel inhibitor of histone deacetylases, SB939, in patients with refractory solid malignancies, Ann. Oncol. 22 (2011) 2516-2522.[17] W.P. Yong, B.C. Goh, R.A. Soo, et al., Phase I and pharmacodynamic study of an orally administered novel inhibitor of histone deacetylases, SB939, in patients with refractory solid malignancies, Ann. Oncol. 22 (2011) 2516-2522.

    18. [18] J.S. de Bono, R. Kristeleit, A. Tolcher, et al., Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors, Clin. Cancer Res. 14 (2008) 6663-6673.[18] J.S. de Bono, R. Kristeleit, A. Tolcher, et al., Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors, Clin. Cancer Res. 14 (2008) 6663-6673.

    19. [19] S. Fouliard, R. Robert, A. Jacquet-Bescond, et al., Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I, Eur. J. Cancer 49 (2013) 2791-2797.[19] S. Fouliard, R. Robert, A. Jacquet-Bescond, et al., Pharmacokinetic/pharmacodynamic modelling-based optimisation of administration schedule for the histone deacetylase inhibitor abexinostat (S78454/PCI-24781) in phase I, Eur. J. Cancer 49 (2013) 2791-2797.

    20. [20] A. Furlan, V. Monzani, L.L. Reznikov, et al., Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat), Mol. Med. 17 (2011) 353-362.[20] A. Furlan, V. Monzani, L.L. Reznikov, et al., Pharmacokinetics, safety and inducible cytokine responses during a phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat), Mol. Med. 17 (2011) 353-362.

    21. [21] Ø. Bruserud, C. Stapnes, E. Ersvaer, et al., Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell, Curr. Pharm. Biotechnol. 8 (2007) 388-400.[21] Ø. Bruserud, C. Stapnes, E. Ersvaer, et al., Histone deacetylase inhibitors in cancer treatment: a review of the clinical toxicity and the modulation of gene expression in cancer cell, Curr. Pharm. Biotechnol. 8 (2007) 388-400.

    22. [22] J. Amato, N. Iaccarino, B. Pagano, et al., Bis-indole derivatives with antitumor activity turn out to be specific ligands of human telomeric G-quadruplex, Front. Chem. 2 (2014) 54.[22] J. Amato, N. Iaccarino, B. Pagano, et al., Bis-indole derivatives with antitumor activity turn out to be specific ligands of human telomeric G-quadruplex, Front. Chem. 2 (2014) 54.

    23. [23] M.T. Macdonough, T.E. Strecker, E. Hamel, et al., Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(30-hydroxy-40-methoxyphenyl)-3-(300,400,500-trimethoxybenzoyl)-6-methoxyindole (OXi8006), Bioorg. Med. Chem. 21 (2013) 6831-6843.[23] M.T. Macdonough, T.E. Strecker, E. Hamel, et al., Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(30-hydroxy-40-methoxyphenyl)-3-(300,400,500-trimethoxybenzoyl)-6-methoxyindole (OXi8006), Bioorg. Med. Chem. 21 (2013) 6831-6843.

    24. [24] Y.S. Cho, L. Whitehead, J. Li, et al., Conformational refinement of hydroxamatebased histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824), J. Med. Chem. 53 (2010) 2952-2963.[24] Y.S. Cho, L. Whitehead, J. Li, et al., Conformational refinement of hydroxamatebased histone deacetylase inhibitors and exploration of 3-piperidin-3-ylindole analogues of dacinostat (LAQ824), J. Med. Chem. 53 (2010) 2952-2963.

    25. [25] C.D. Hein, X.M. Liu, D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences, Pharm. Res. 25 (2008) 2216-2230.[25] C.D. Hein, X.M. Liu, D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences, Pharm. Res. 25 (2008) 2216-2230.

    26. [26] G.C. Tron, T. Pirali, R.A. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev. 28 (2008) 278-308.[26] G.C. Tron, T. Pirali, R.A. Billington, et al., Click chemistry reactions in medicinal chemistry: applications of the 1,3-dipolar cycloaddition between azides and alkynes, Med. Res. Rev. 28 (2008) 278-308.

    27. [27] A.R. Bogdan, K. James, Efficient access to new chemical space through flowconstruction of druglike macrocycles through copper-surface-catalyzed azidealkyne cycloaddition reactions, Chemistry 16 (2010) 14506-14512.[27] A.R. Bogdan, K. James, Efficient access to new chemical space through flowconstruction of druglike macrocycles through copper-surface-catalyzed azidealkyne cycloaddition reactions, Chemistry 16 (2010) 14506-14512.

    28. [28] The data of selected compounds: 8c: Yield: 86%, mp 116-119℃; ESI-MSm/z: 390[M+H]+. 1H NMR (300 MHz, DMSO-d6):δ5.31 (s, 2H), 5.43 (s, 2H), 6.55 (d, 1H, J = 15.9 Hz), 6.96-6.99 (m, 2H), 7.08-7.11 (m, 2H), 7.15 (d, 1H, J = 2.4 Hz), 7.35 (m, 1H), 7.57 (d, 1H, J = 7.8 Hz), 7.63-7.68 (m, 3H), 7.79 (s, 1H), 8.96 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.5, 71.2, 107.4, 111.8, 115.6, 118.2, 118.5, 119.3, 120.7, 122.7, 123.1, 127.1, 130.5, 136.0, 139.2, 146.3, 155.1, 164.6. ESIHRMS (m/z): [M+H]+ calcd. for C21H20N5O3: 390.1566; found: 390.1558. 8d: Yield: 83%, mp 123-125℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.81 (s, 3H), 5.29 (s, 2H), 5.50 (s, 2H), 6.53 (d, 1H, J = 15.9 Hz), 6.94-6.97 (m, 3H), 7.08-7.10 (m, 2H), 7.15-7.21 (m, 3H), 7.33 (d, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.62 (d, 1H, J = 15.9 Hz), 7.77 (s, 1H), 8.91 (s, 1H), 10.35 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.0, 56.3, 71.5, 107.7, 110.7, 111.6, 114.4, 118.3, 118.9, 119.5, 121.0, 122.9, 123.3, 127.6, 136.3, 138.9, 146.2, 146.5, 154.8, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1665. 8i: Yield: 89%, mp 105-108℃; ESI-MS m/z: 434 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ2.61 (t, 2H, J = 6.6 Hz), 3.37 (t, 2H, J = 6.6 Hz), 3.83 (s, 3H), 5.33 (s, 2H), 6.56 (d, 1H, J = 15.9 Hz), 6.92-6.98 (m, 3H), 7.09-7.12 (m, 2H), 7.17-7.22 (m, 3H), 7.35 (d, 1H, J = 7.8 Hz), 7.57 (d, 1H, J = 7.8 Hz), 7.65 (d, 1H, J = 15.9 Hz), 7.80 (s, 1H), 8.95 (s, 1H), 10.39 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ28.1, 50.3, 56.5, 71.3, 106.9, 110.5, 111.3, 114.5, 117.8, 118.5, 119.2, 120.7, 122.5, 123.1, 127.3, 136.3, 138.9, 146.2, 146.7, 155.1, 164.9. ESI-HRMS (m/z):[M+H]+ calcd. for C23H24N5O4: 434.1828; found: 434.1842. 8m: Yield: 82%, mp 121-124℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.80 (s, 3H), 5.30 (s, 2H), 5.46 (s, 2H), 6.52 (d, 1H, J = 15.9 Hz), 6.76 (m, 1H), 6.96 (d, 2H, J = 8.4 Hz), 7.11-7.15 (m, 2H), 7.22 (d, 1H, J = 7.8 Hz), 7.61-7.66 (m, 3H), 7.75 (s, 1H), 8.87 (s, 1H), 10.25 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.1, 56.8, 71.5, 102.1, 111.9, 112.2, 115.5, 118.4, 122.6, 123.3, 128.3, 129.1, 130.1, 138.9, 146.2, 146.6, 155.3, 165.1. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1681. 8n: Yield: 85%, mp 110-112℃; ESI-MS m/z: 450 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.83 (s, 6H), 5.35 (s, 2H), 5.53 (s, 2H), 6.57 (d, 1H, J = 15.9 Hz), 6.79 (m, 1H), 6.95-7.00 (m, 3H), 7.12-7.23 (m, 5H), 7.65 (d, 1H, J = 15.9 Hz), 7.81 (s, 1H), 8.97 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.3, 56.8, 71.6, 101.9, 110.3, 111.1, 112.1, 112.7, 118.5, 122.5, 123.2, 128.9, 129.3, 130.4, 138.7, 146.2, 146.4, 146.8, 154.7, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C23H24N5O5: 450.1777; found: 450.1786. 8o: Yield: 83%, mp 118-120℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.79 (s, 3H), 5.32 (s, 2H), 5.45 (s, 2H), 6.50 (d, 1H, J = 15.9 Hz), 6.88-6.93 (m, 2H), 7.09-7.17 (m, 4H), 7.24 (d, 1H, J = 7.8 Hz), 7.53 (m, 1H), 7.62 (d, 1H, J = 15.9 Hz), 7.73 (s, 1H), 8.82 (s, 1H), 10.33 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.8, 71.5, 102.0, 112.0, 112.4, 114.7, 118.5, 122.7, 123.1, 128.0, 128.5, 130.2, 137.6, 146.2, 146.4, 155.3, 164.9. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1659.[28] The data of selected compounds: 8c: Yield: 86%, mp 116-119℃; ESI-MSm/z: 390[M+H]+. 1H NMR (300 MHz, DMSO-d6):δ5.31 (s, 2H), 5.43 (s, 2H), 6.55 (d, 1H, J = 15.9 Hz), 6.96-6.99 (m, 2H), 7.08-7.11 (m, 2H), 7.15 (d, 1H, J = 2.4 Hz), 7.35 (m, 1H), 7.57 (d, 1H, J = 7.8 Hz), 7.63-7.68 (m, 3H), 7.79 (s, 1H), 8.96 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.5, 71.2, 107.4, 111.8, 115.6, 118.2, 118.5, 119.3, 120.7, 122.7, 123.1, 127.1, 130.5, 136.0, 139.2, 146.3, 155.1, 164.6. ESIHRMS (m/z): [M+H]+ calcd. for C21H20N5O3: 390.1566; found: 390.1558. 8d: Yield: 83%, mp 123-125℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.81 (s, 3H), 5.29 (s, 2H), 5.50 (s, 2H), 6.53 (d, 1H, J = 15.9 Hz), 6.94-6.97 (m, 3H), 7.08-7.10 (m, 2H), 7.15-7.21 (m, 3H), 7.33 (d, 1H, J = 7.8 Hz), 7.56 (d, 1H, J = 7.8 Hz), 7.62 (d, 1H, J = 15.9 Hz), 7.77 (s, 1H), 8.91 (s, 1H), 10.35 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.0, 56.3, 71.5, 107.7, 110.7, 111.6, 114.4, 118.3, 118.9, 119.5, 121.0, 122.9, 123.3, 127.6, 136.3, 138.9, 146.2, 146.5, 154.8, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1665. 8i: Yield: 89%, mp 105-108℃; ESI-MS m/z: 434 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ2.61 (t, 2H, J = 6.6 Hz), 3.37 (t, 2H, J = 6.6 Hz), 3.83 (s, 3H), 5.33 (s, 2H), 6.56 (d, 1H, J = 15.9 Hz), 6.92-6.98 (m, 3H), 7.09-7.12 (m, 2H), 7.17-7.22 (m, 3H), 7.35 (d, 1H, J = 7.8 Hz), 7.57 (d, 1H, J = 7.8 Hz), 7.65 (d, 1H, J = 15.9 Hz), 7.80 (s, 1H), 8.95 (s, 1H), 10.39 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ28.1, 50.3, 56.5, 71.3, 106.9, 110.5, 111.3, 114.5, 117.8, 118.5, 119.2, 120.7, 122.5, 123.1, 127.3, 136.3, 138.9, 146.2, 146.7, 155.1, 164.9. ESI-HRMS (m/z):[M+H]+ calcd. for C23H24N5O4: 434.1828; found: 434.1842. 8m: Yield: 82%, mp 121-124℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.80 (s, 3H), 5.30 (s, 2H), 5.46 (s, 2H), 6.52 (d, 1H, J = 15.9 Hz), 6.76 (m, 1H), 6.96 (d, 2H, J = 8.4 Hz), 7.11-7.15 (m, 2H), 7.22 (d, 1H, J = 7.8 Hz), 7.61-7.66 (m, 3H), 7.75 (s, 1H), 8.87 (s, 1H), 10.25 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.1, 56.8, 71.5, 102.1, 111.9, 112.2, 115.5, 118.4, 122.6, 123.3, 128.3, 129.1, 130.1, 138.9, 146.2, 146.6, 155.3, 165.1. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1681. 8n: Yield: 85%, mp 110-112℃; ESI-MS m/z: 450 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.83 (s, 6H), 5.35 (s, 2H), 5.53 (s, 2H), 6.57 (d, 1H, J = 15.9 Hz), 6.79 (m, 1H), 6.95-7.00 (m, 3H), 7.12-7.23 (m, 5H), 7.65 (d, 1H, J = 15.9 Hz), 7.81 (s, 1H), 8.97 (s, 1H), 10.41 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.3, 56.8, 71.6, 101.9, 110.3, 111.1, 112.1, 112.7, 118.5, 122.5, 123.2, 128.9, 129.3, 130.4, 138.7, 146.2, 146.4, 146.8, 154.7, 164.7. ESI-HRMS (m/z): [M+H]+ calcd. for C23H24N5O5: 450.1777; found: 450.1786. 8o: Yield: 83%, mp 118-120℃; ESI-MS m/z: 420 [M+H]+. 1H NMR (300 MHz, DMSO-d6):δ3.79 (s, 3H), 5.32 (s, 2H), 5.45 (s, 2H), 6.50 (d, 1H, J = 15.9 Hz), 6.88-6.93 (m, 2H), 7.09-7.17 (m, 4H), 7.24 (d, 1H, J = 7.8 Hz), 7.53 (m, 1H), 7.62 (d, 1H, J = 15.9 Hz), 7.73 (s, 1H), 8.82 (s, 1H), 10.33 (s, 1H). 13C NMR (75 MHz, DMSO-d6):δ52.8, 71.5, 102.0, 112.0, 112.4, 114.7, 118.5, 122.7, 123.1, 128.0, 128.5, 130.2, 137.6, 146.2, 146.4, 155.3, 164.9. ESI-HRMS (m/z): [M+H]+ calcd. for C22H22N5O4: 420.1672; found: 420.1659.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1210
  • HTML全文浏览量:  24
文章相关
  • 发布日期:  2015-03-27
  • 收稿日期:  2014-12-11
  • 网络出版日期:  2015-01-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章