Direct amination of pyrimidin-2-yl tosylates with aqueous ammonia under metal-free and mild conditions

Hai-Peng Gong Yue Zhang Yu-Xia Da Zhang Zhang Zheng-Jun Quan Xi-Cun Wang

Citation:  Hai-Peng Gong, Yue Zhang, Yu-Xia Da, Zhang Zhang, Zheng-Jun Quan, Xi-Cun Wang. Direct amination of pyrimidin-2-yl tosylates with aqueous ammonia under metal-free and mild conditions[J]. Chinese Chemical Letters, 2015, 26(6): 667-671. doi: 10.1016/j.cclet.2015.01.034 shu

Direct amination of pyrimidin-2-yl tosylates with aqueous ammonia under metal-free and mild conditions

    通讯作者: Zheng-Jun Quan,
    Xi-Cun Wang,
  • 基金项目:

    the Natural Science Foundation of Gansu Province (No. 1208RJYA083) (No. 1208RJYA083)

    the Education Department of Gansu Province (No. 2013B-010). (No. 2013B-010)

摘要: Ametal-free synthesis of pyrimidine functionalized primary amines via direct amination of pyrimidin-2-yl tosylate with aqueous ammonia has been developed under mild conditions. The desired products pyrimidin-2-amines can be generated in excellent yields in PEG-400, without any catalysts or other additives.

English

  • 
    1. [1] (a) M. Negwer, Organic Drugs and Their Synonyms, 7th ed., Akademie Verlag Gmbh, Berlin, 1994; (b) S. Suwanprasop, T. Nhujak, S. Roengsumran, A. Petsom, Petroleum marker dyes synthesized from cardanol and aniline derivatives, Ind. Eng. Chem. Res. 43 (2004) 4973-4978.[1] (a) M. Negwer, Organic Drugs and Their Synonyms, 7th ed., Akademie Verlag Gmbh, Berlin, 1994; (b) S. Suwanprasop, T. Nhujak, S. Roengsumran, A. Petsom, Petroleum marker dyes synthesized from cardanol and aniline derivatives, Ind. Eng. Chem. Res. 43 (2004) 4973-4978.

    2. [2] For reviews see: (a) D.M. Roundhill, Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines, Chem. Rev. 92 (1992) 1-27; (b) J.I. Van der Vlugt, Advances in selective activation and application of ammonia in homogeneous catalysis, Chem. Soc. Rev. 39 (2010) 2302-2322; (c) J.L. Klinkenberg, J.F. Hartwig, Catalytic organometallic reactions of ammonia, Angew. Chem. Int. Ed. 50 (2011) 86-95.[2] For reviews see: (a) D.M. Roundhill, Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines, Chem. Rev. 92 (1992) 1-27; (b) J.I. Van der Vlugt, Advances in selective activation and application of ammonia in homogeneous catalysis, Chem. Soc. Rev. 39 (2010) 2302-2322; (c) J.L. Klinkenberg, J.F. Hartwig, Catalytic organometallic reactions of ammonia, Angew. Chem. Int. Ed. 50 (2011) 86-95.

    3. [3] (a) A.W. Heinen, J.A. Peters, H. Van Bekkum, The reductive amination of benzaldehyde over Pd/C catalysts: mechanism and effect of carbon modifications on the selectivity, Eur. J. Org. Chem. 13 (2000) 2501-2506; (b) T. Gross, A.M. Seayad, M. Ahmad, M. Beller, Synthesis of primary amines: first homogeneously catalyzed reductive amination with ammonia, Org. Lett. 4 (2002) 2055-2058;(c) S. Ogo, K. Uehara, T. Abura, S. Fukuzumi, pH-dependent chemoselective synthesis of α-amino acids. Reductive amination of α-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water, J. Am. Chem. Soc. 126 (2004) 3020-3021.[3] (a) A.W. Heinen, J.A. Peters, H. Van Bekkum, The reductive amination of benzaldehyde over Pd/C catalysts: mechanism and effect of carbon modifications on the selectivity, Eur. J. Org. Chem. 13 (2000) 2501-2506; (b) T. Gross, A.M. Seayad, M. Ahmad, M. Beller, Synthesis of primary amines: first homogeneously catalyzed reductive amination with ammonia, Org. Lett. 4 (2002) 2055-2058;(c) S. Ogo, K. Uehara, T. Abura, S. Fukuzumi, pH-dependent chemoselective synthesis of α-amino acids. Reductive amination of α-keto acids with ammonia catalyzed by acid-stable iridium hydride complexes in water, J. Am. Chem. Soc. 126 (2004) 3020-3021.

    4. [4] (a) S. Hong, T.J. Marks, Organolanthanide-catalyzed hydroamination, Acc. Chem. Res. 37 (2004) 673-686; (b) V. Lavallo, G.D. Frey, B. Donnadieu, M. Soleilhavoup, G. Bertrand, Homogeneous catalytic hydroamination of alkynes and allenes with ammonia, Angew. Chem. Int. Ed. 47 (2008) 5224-5228; (c) J. Seayad, A. Tillack, C.G. Hartung, M. Beller, Base-catalyzed hydroamination of olefins: an environmentally friendly route to amines, Adv. Synth. Catal. 344 (2002) 795-813; (d) M. Lequitte, F. Figueras, C. Moreau, S. Hub, Amination of butenes over protonic zeolites, J. Catal. 163 (1996) 255-261; (e) C.A. Tsipis, C.E. Kefalidis, How efficient are the hydrido-bridged diplatinum catalysts in the hydrosilylation, hydrocyanation, and hydroamination of alkynes: a theoretical analysis of the catalytic cycles employing electronic structure calculation methods, Organometallics 25 (2006) 1696-1706.[4] (a) S. Hong, T.J. Marks, Organolanthanide-catalyzed hydroamination, Acc. Chem. Res. 37 (2004) 673-686; (b) V. Lavallo, G.D. Frey, B. Donnadieu, M. Soleilhavoup, G. Bertrand, Homogeneous catalytic hydroamination of alkynes and allenes with ammonia, Angew. Chem. Int. Ed. 47 (2008) 5224-5228; (c) J. Seayad, A. Tillack, C.G. Hartung, M. Beller, Base-catalyzed hydroamination of olefins: an environmentally friendly route to amines, Adv. Synth. Catal. 344 (2002) 795-813; (d) M. Lequitte, F. Figueras, C. Moreau, S. Hub, Amination of butenes over protonic zeolites, J. Catal. 163 (1996) 255-261; (e) C.A. Tsipis, C.E. Kefalidis, How efficient are the hydrido-bridged diplatinum catalysts in the hydrosilylation, hydrocyanation, and hydroamination of alkynes: a theoretical analysis of the catalytic cycles employing electronic structure calculation methods, Organometallics 25 (2006) 1696-1706.

    5. [5] (a) E.I. du Pont de Nemours & Co., Synthesis of amines, US Patent 2497310, United States (1950).; (b) J.J. Lin, J.F. Knifton, Process for synthesis of primary amines from olefins, syngas and ammonia, US Patent 4794199, N. Texaco Inc. (White Plains), United States (1988). (c) B. Zimmermann, J. Herwig, M. Beller, The first efficient hydroaminomethylation with ammonia: with dual metal catalysts and two-phase catalysis to primary amines, Angew. Chem. Int. Ed. 38 (1999) 2372-2375.[5] (a) E.I. du Pont de Nemours & Co., Synthesis of amines, US Patent 2497310, United States (1950).; (b) J.J. Lin, J.F. Knifton, Process for synthesis of primary amines from olefins, syngas and ammonia, US Patent 4794199, N. Texaco Inc. (White Plains), United States (1988). (c) B. Zimmermann, J. Herwig, M. Beller, The first efficient hydroaminomethylation with ammonia: with dual metal catalysts and two-phase catalysis to primary amines, Angew. Chem. Int. Ed. 38 (1999) 2372-2375.

    6. [6] (a) J. Tsuji, M. Takahashi, Palladium-catalyzed telomerization of butadiene with ammonia, J. Mol. Catal. 10 (1981) 107; (b) B. Driessen-Holscher, in: B. Cornils (Ed.), Multiphase Homogeneous Catalysis, Wiley-VCH, Weinheim, 2005, 238 and references therein.[6] (a) J. Tsuji, M. Takahashi, Palladium-catalyzed telomerization of butadiene with ammonia, J. Mol. Catal. 10 (1981) 107; (b) B. Driessen-Holscher, in: B. Cornils (Ed.), Multiphase Homogeneous Catalysis, Wiley-VCH, Weinheim, 2005, 238 and references therein.

    7. [7] (a) K. Weissermel, H.J. Arpe, Industry Organic Chemistry, Wiley-VCH, Weinheim, 1997; (b) Y.B. Jiang, W.S. Zhang, H.L. Cheng, Y.Q. Liu, R. Yang, One-pot synthesis of Naryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide under microwave-assisted conditions, Chin. Chem. Lett. 25 (2014) 779-782.[7] (a) K. Weissermel, H.J. Arpe, Industry Organic Chemistry, Wiley-VCH, Weinheim, 1997; (b) Y.B. Jiang, W.S. Zhang, H.L. Cheng, Y.Q. Liu, R. Yang, One-pot synthesis of Naryl propargylamine from aromatic boronic acid, aqueous ammonia, and propargyl bromide under microwave-assisted conditions, Chin. Chem. Lett. 25 (2014) 779-782.

    8. [8] (a) S.A. Lawrence, Amines: Synthesis Properties, and Application, Cambridge University Press, Cambridge, 2004; (b) M.C. Willis, Palladium-catalyzed coupling of ammonia and hydroxide with aryl halides: the direct synthesis of primary anilines and phenols, Angew. Chem. Int. Ed. 46 (2007) 3402-3404; (c) S. Bahn, S. Imm, L. Neubert, et al., Synthesis of primary amines from secondary and tertiary amines: ruthenium-catalyzed amination using ammonia, Chem. Eur. J. 17 (2011) 4705-4708;(d) K. Das, R. Shibuya, Y. Nakahara, et al., Platinum-catalyzed direct amination of allylic alcohols with aqueous ammonia: selective synthesis of primary allylamines, Angew. Chem. Int. Ed. 51 (2012) 150-154.[8] (a) S.A. Lawrence, Amines: Synthesis Properties, and Application, Cambridge University Press, Cambridge, 2004; (b) M.C. Willis, Palladium-catalyzed coupling of ammonia and hydroxide with aryl halides: the direct synthesis of primary anilines and phenols, Angew. Chem. Int. Ed. 46 (2007) 3402-3404; (c) S. Bahn, S. Imm, L. Neubert, et al., Synthesis of primary amines from secondary and tertiary amines: ruthenium-catalyzed amination using ammonia, Chem. Eur. J. 17 (2011) 4705-4708;(d) K. Das, R. Shibuya, Y. Nakahara, et al., Platinum-catalyzed direct amination of allylic alcohols with aqueous ammonia: selective synthesis of primary allylamines, Angew. Chem. Int. Ed. 51 (2012) 150-154.

    9. [9] Examples for palladium-catalyzed formation of aromatic amines: (a) Q. Shen, J.F. Hartwig, Palladium-catalyzed coupling of ammonia and lithium amide with aryl halides, J. Am. Chem. Soc. 128 (2006) 10028-10029; (b) D.S. Surry, S.L. Buchwald, Selective palladium-catalyzed arylation of ammonia: synthesis of anilines as well as symmetrical and unsymmetrical di-and triarylamines, J. Am. Chem. Soc. 129 (2007) 10354-10355; (c) X.H. Huang, S.L. Buchwald, New ammonia equivalents for the Pd-catalyzed amination of aryl halides, Org. Lett. 3 (2001) 3417-3419; (d) S. Lee, M. Jogensen, J.F. Hartwig, Palladium-catalyzed synthesis of arylamines from aryl halides and lithium bis(trimethylsilyl)amide as an ammonia equivalent, Org. Lett. 3 (2001) 2729-2732; (e) D.Y. Lee, J.F. Hartwig, Zinc trimethylsilylamide as a mild ammonia equivalent and base for the amination of aryl halides and triflates, Org. Lett. 7 (2005) 1169-1172; (f) X.H. Huang, K.W. Anderson, D. Zim, et al., Expanding Pd-catalyzed C-N bondforming processes: the first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions, J. Am. Chem. Soc. 125 (2003) 6653-6655; (g) J. Barluenga, F. Aznar, C. Valdes, N-trialkylsilylimines as coupling partners for Pd-catalyzed C-N bond-forming reactions: one-step synthesis of imines and azadienes from aryl and alkenyl bromides, Angew. Chem. Int. Ed. 43 (2004) 343-345; (h) J. Yin, S.L. Buchwald, Palladium-catalyzed intermolecular coupling of aryl halides and amides, Org. Lett. 2 (2000) 1101-1104.[9] Examples for palladium-catalyzed formation of aromatic amines: (a) Q. Shen, J.F. Hartwig, Palladium-catalyzed coupling of ammonia and lithium amide with aryl halides, J. Am. Chem. Soc. 128 (2006) 10028-10029; (b) D.S. Surry, S.L. Buchwald, Selective palladium-catalyzed arylation of ammonia: synthesis of anilines as well as symmetrical and unsymmetrical di-and triarylamines, J. Am. Chem. Soc. 129 (2007) 10354-10355; (c) X.H. Huang, S.L. Buchwald, New ammonia equivalents for the Pd-catalyzed amination of aryl halides, Org. Lett. 3 (2001) 3417-3419; (d) S. Lee, M. Jogensen, J.F. Hartwig, Palladium-catalyzed synthesis of arylamines from aryl halides and lithium bis(trimethylsilyl)amide as an ammonia equivalent, Org. Lett. 3 (2001) 2729-2732; (e) D.Y. Lee, J.F. Hartwig, Zinc trimethylsilylamide as a mild ammonia equivalent and base for the amination of aryl halides and triflates, Org. Lett. 7 (2005) 1169-1172; (f) X.H. Huang, K.W. Anderson, D. Zim, et al., Expanding Pd-catalyzed C-N bondforming processes: the first amidation of aryl sulfonates, aqueous amination, and complementarity with Cu-catalyzed reactions, J. Am. Chem. Soc. 125 (2003) 6653-6655; (g) J. Barluenga, F. Aznar, C. Valdes, N-trialkylsilylimines as coupling partners for Pd-catalyzed C-N bond-forming reactions: one-step synthesis of imines and azadienes from aryl and alkenyl bromides, Angew. Chem. Int. Ed. 43 (2004) 343-345; (h) J. Yin, S.L. Buchwald, Palladium-catalyzed intermolecular coupling of aryl halides and amides, Org. Lett. 2 (2000) 1101-1104.

    10. [10] Examples for copper-catalyzed formation of aromatic amines: (a) J.M. Chen, T.J. Yuan, W.Y. Hao, M.Z. Cai, Simple and efficient CuI/PEG-400 system for amination of aryl halides with aqueous ammonia, Tetrahedron Lett. 52 (2011) 3710-3713; (b) Y. Li, X.H. Zhu, F. Meng, Y.Q. Wan, Copper/oxalohydrazide/ketone catalyzed synthesis of primary arylamines via coupling of aryl halides with aqueous ammonia in water, Tetrahedron 67 (2011) 5450-5454; (c) F.Meng, X.H. Zhu, Y. Li, et al., Efficient copper-catalyzed direct amination of aryl halides using aqueous ammonia in water, Eur. J. Org. Chem. 32 (2010) 6149-6152; (d) Z.Q.Wu, Z.Q. Jiang, D.Wu, H.F. Xiang, X.G. Zhou, A simple and efficient catalytic system for coupling aryl halides with aqueousammonia in water, Eur. J. Org. Chem. 10 (2010) 1854-1857; (e) N. Xia, M. Taillefer, A very simple copper-catalyzed synthesis of anilines by employing aqueous ammonia, Angew. Chem. Int. Ed. 48 (2009) 337-339; (f) R. Ntaganda, B. Dhudshia, C.L.B. Macdonald, A. Thadani, Cross-coupling of aryl/heteroaryl bromides with ammonia using a copper-carbene catalyst, Chem. Commun. 46 (2008) 6200-6202; (g) J. Kim, S. Chang, Ammonium salts as an inexpensive and convenient nitrogen source in the Cu-catalyzed amination of aryl halides at room temperature, Chem. Commun. 26 (2008) 3052-3054; (h) F. Lang, D. Zewge, I.N. Houpis, R.P. Volante, Amination of aryl halides using copper catalysis, Tetrahedron Lett. 42 (2001) 3251-3254; (i) S. Gaillard, M.K. Elmkaddem, C. Fischmeister, C.M. Thomas, J.L. Renaud, Highly efficient and economic synthesis of new substituted amino-bispyridyl derivatives via copper and palladium catalysis, Tetrahedron Lett. 49 (2008) 3471-3474; (j) X. Gao, H. Fu, R. Qiao, Y. Jiang, Y. Zhao, Copper-catalyzed synthesis of primary arylamines via cascade reactions of aryl halideswithamidine hydrochlorides, J. Org. Chem. 73 (2008) 6864-6866; (k) H. Xu, C. Wolf, Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia, Chem. Commun. 48 (2009) 3035-3037; (l) D.P.Wang, Q. Cai,K. Ding,Anefficient copper-catalyzedaminationof aryl halides by aqueous ammonia, Adv. Synth. Catal. 351 (2009) 1722-1726; (m) P.J. Ji, J.H. Atherton, I. Michael, Copper(I)-catalyzed amination of aryl halides in liquid ammonia, J. Org. Chem. 77 (2012) 7471-7478; (n) J.X. Zhang, H.Q. Yin, S.Q. Han, Copper-catalyzed N-arylations of nitrogen-containing heterocycles in water, Chin. J. Org. Chem. 32 (2012) 1429-1433; (o) W. Liu, Y.L. Bi, Progress in copper-catalyzed direct arylation of aromatic C-H bonds, Chin. J. Org. Chem. 32 (2012) 1041-1050.[10] Examples for copper-catalyzed formation of aromatic amines: (a) J.M. Chen, T.J. Yuan, W.Y. Hao, M.Z. Cai, Simple and efficient CuI/PEG-400 system for amination of aryl halides with aqueous ammonia, Tetrahedron Lett. 52 (2011) 3710-3713; (b) Y. Li, X.H. Zhu, F. Meng, Y.Q. Wan, Copper/oxalohydrazide/ketone catalyzed synthesis of primary arylamines via coupling of aryl halides with aqueous ammonia in water, Tetrahedron 67 (2011) 5450-5454; (c) F.Meng, X.H. Zhu, Y. Li, et al., Efficient copper-catalyzed direct amination of aryl halides using aqueous ammonia in water, Eur. J. Org. Chem. 32 (2010) 6149-6152; (d) Z.Q.Wu, Z.Q. Jiang, D.Wu, H.F. Xiang, X.G. Zhou, A simple and efficient catalytic system for coupling aryl halides with aqueousammonia in water, Eur. J. Org. Chem. 10 (2010) 1854-1857; (e) N. Xia, M. Taillefer, A very simple copper-catalyzed synthesis of anilines by employing aqueous ammonia, Angew. Chem. Int. Ed. 48 (2009) 337-339; (f) R. Ntaganda, B. Dhudshia, C.L.B. Macdonald, A. Thadani, Cross-coupling of aryl/heteroaryl bromides with ammonia using a copper-carbene catalyst, Chem. Commun. 46 (2008) 6200-6202; (g) J. Kim, S. Chang, Ammonium salts as an inexpensive and convenient nitrogen source in the Cu-catalyzed amination of aryl halides at room temperature, Chem. Commun. 26 (2008) 3052-3054; (h) F. Lang, D. Zewge, I.N. Houpis, R.P. Volante, Amination of aryl halides using copper catalysis, Tetrahedron Lett. 42 (2001) 3251-3254; (i) S. Gaillard, M.K. Elmkaddem, C. Fischmeister, C.M. Thomas, J.L. Renaud, Highly efficient and economic synthesis of new substituted amino-bispyridyl derivatives via copper and palladium catalysis, Tetrahedron Lett. 49 (2008) 3471-3474; (j) X. Gao, H. Fu, R. Qiao, Y. Jiang, Y. Zhao, Copper-catalyzed synthesis of primary arylamines via cascade reactions of aryl halideswithamidine hydrochlorides, J. Org. Chem. 73 (2008) 6864-6866; (k) H. Xu, C. Wolf, Efficient copper-catalyzed coupling of aryl chlorides, bromides and iodides with aqueous ammonia, Chem. Commun. 48 (2009) 3035-3037; (l) D.P.Wang, Q. Cai,K. Ding,Anefficient copper-catalyzedaminationof aryl halides by aqueous ammonia, Adv. Synth. Catal. 351 (2009) 1722-1726; (m) P.J. Ji, J.H. Atherton, I. Michael, Copper(I)-catalyzed amination of aryl halides in liquid ammonia, J. Org. Chem. 77 (2012) 7471-7478; (n) J.X. Zhang, H.Q. Yin, S.Q. Han, Copper-catalyzed N-arylations of nitrogen-containing heterocycles in water, Chin. J. Org. Chem. 32 (2012) 1429-1433; (o) W. Liu, Y.L. Bi, Progress in copper-catalyzed direct arylation of aromatic C-H bonds, Chin. J. Org. Chem. 32 (2012) 1041-1050.

    11. [11] C.O. Kappe, Biologically active dihydropyrimidones of the Biginelli-type-A literature survey, Eur. J. Med. Chem. 35 (2000) 1043-1052.[11] C.O. Kappe, Biologically active dihydropyrimidones of the Biginelli-type-A literature survey, Eur. J. Med. Chem. 35 (2000) 1043-1052.

    12. [12] (a) C.O. Kappe, 100 years of the Biginelli dihydropyrimidine synthesis, Tetrahedron 49 (1993) 6937-6963; (b) C.O. Kappe, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res. 33 (2000) 879-888; (c) C.O. Kappe, A. Stadler, The Biginelli dihydropyrimidine synthesis, Org. React. 63 (2004) 1-117; (d) K. Singh, D. Arora, K. Singh, S. Singh, Genesis of dihydropyrimidinone calcium channel blockers: recent progress in structure-activity relationships and other effects, Med. Chem. 9 (2009) 95-106.[12] (a) C.O. Kappe, 100 years of the Biginelli dihydropyrimidine synthesis, Tetrahedron 49 (1993) 6937-6963; (b) C.O. Kappe, Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog, Acc. Chem. Res. 33 (2000) 879-888; (c) C.O. Kappe, A. Stadler, The Biginelli dihydropyrimidine synthesis, Org. React. 63 (2004) 1-117; (d) K. Singh, D. Arora, K. Singh, S. Singh, Genesis of dihydropyrimidinone calcium channel blockers: recent progress in structure-activity relationships and other effects, Med. Chem. 9 (2009) 95-106.

    13. [13] (a) Z.J. Quan, H.D. Xia, Z. Zhang, Y.X. Da, X.C. Wang, An efficient copper-catalyzed N-arylation of amides: synthesis of N-arylacrylamides and 4-amido-N-phenylbenzamides, Tetrahedron 69 (2013) 8368-8374; (b) Z.J. Quan, H.D. Xia, Z. Zhang, Y.X. Da, X.C. Wang, Copper-catalyzed amination of aryl halides with aqueous ammonia under mild conditions, Chin. J. Chem. 31 (2013) 501-506; (c) Z.J. Quan, W.H. Hu, X.D. Jia, et al., A domino desulfitative coupling/acylation/hydration process cocatalyzed by copper(i) and palladium(ii): synthesis of highly substituted and functionalized fyrimidines, Adv. Synth. Catal. 354 (2012) 2939-2948; (d) Z.J. Quan, Y. Lv, Z.J. Wang, et al., Molecular iodine-mediated S-N and C-N cross-coupling and oxidative aromatization of 3,4-dihydropyrimidin-2(1H)-thiones with secondary amines, Tetrahedron Lett. 54 (2013) 1884-1887; (e) Z.J. Quan, W.H. Hu, Z. Zhang, et al., One-pot synthesis of allylamine derivatives by iodine-catalyzed three-component reaction of N-heterocycles, paraformaldehyde and styrenes, Adv. Synth. Catal. 355 (2013) 891-900; (f) Y.X. Da, Z. Zhang, Z.J. Quan, Intermolecular cyclocondensation reaction of 3,4-dihydropyrimidine-2-thione under the Mitsunobu reaction conditions, Chin. Chem. Lett. 22 (2011) 679; (g) X.C. Wang, G.J. Yang, Z.J. Quan, P.Y. Ji, J.L. Liang, R.G. Ren, Synthesis of 2-substituted pyrimidines via cross-coupling reaction of pyrimidin-2-yl sulfonates with nucleophiles in polyethylene glycol 400, Synlett 11 (2010) 1657-1660.[13] (a) Z.J. Quan, H.D. Xia, Z. Zhang, Y.X. Da, X.C. Wang, An efficient copper-catalyzed N-arylation of amides: synthesis of N-arylacrylamides and 4-amido-N-phenylbenzamides, Tetrahedron 69 (2013) 8368-8374; (b) Z.J. Quan, H.D. Xia, Z. Zhang, Y.X. Da, X.C. Wang, Copper-catalyzed amination of aryl halides with aqueous ammonia under mild conditions, Chin. J. Chem. 31 (2013) 501-506; (c) Z.J. Quan, W.H. Hu, X.D. Jia, et al., A domino desulfitative coupling/acylation/hydration process cocatalyzed by copper(i) and palladium(ii): synthesis of highly substituted and functionalized fyrimidines, Adv. Synth. Catal. 354 (2012) 2939-2948; (d) Z.J. Quan, Y. Lv, Z.J. Wang, et al., Molecular iodine-mediated S-N and C-N cross-coupling and oxidative aromatization of 3,4-dihydropyrimidin-2(1H)-thiones with secondary amines, Tetrahedron Lett. 54 (2013) 1884-1887; (e) Z.J. Quan, W.H. Hu, Z. Zhang, et al., One-pot synthesis of allylamine derivatives by iodine-catalyzed three-component reaction of N-heterocycles, paraformaldehyde and styrenes, Adv. Synth. Catal. 355 (2013) 891-900; (f) Y.X. Da, Z. Zhang, Z.J. Quan, Intermolecular cyclocondensation reaction of 3,4-dihydropyrimidine-2-thione under the Mitsunobu reaction conditions, Chin. Chem. Lett. 22 (2011) 679; (g) X.C. Wang, G.J. Yang, Z.J. Quan, P.Y. Ji, J.L. Liang, R.G. Ren, Synthesis of 2-substituted pyrimidines via cross-coupling reaction of pyrimidin-2-yl sulfonates with nucleophiles in polyethylene glycol 400, Synlett 11 (2010) 1657-1660.

    14. [14] For a review, see: I.M. Lagoja, Pyrimidine as constituent of natural biologically active compounds, Chem. Biodiversity 2 (2005) 1-50.[14] For a review, see: I.M. Lagoja, Pyrimidine as constituent of natural biologically active compounds, Chem. Biodiversity 2 (2005) 1-50.

    15. [15] (a) K.B. Goodman, D. Lee, C.A. Sehon, A.Q. Viet, G.Z. Wang, Novel inhibitors of rhokinases, Int. Patent Appl. WO 2006009889 (2006).; (b) D. Drewry, B. Evans, K.B. Goodman, et al., Chemical compounds, Int. Patent Appl. WO 2004112719 A8 (2004).[15] (a) K.B. Goodman, D. Lee, C.A. Sehon, A.Q. Viet, G.Z. Wang, Novel inhibitors of rhokinases, Int. Patent Appl. WO 2006009889 (2006).; (b) D. Drewry, B. Evans, K.B. Goodman, et al., Chemical compounds, Int. Patent Appl. WO 2004112719 A8 (2004).

    16. [16] J.M. Nuss, S.D. Harrison, D.B. Ring, et al., U.S. Patent 6,417,185 (2002); Chem. Abstr. 137 (2002) 325431[16] J.M. Nuss, S.D. Harrison, D.B. Ring, et al., U.S. Patent 6,417,185 (2002); Chem. Abstr. 137 (2002) 325431

    17. [17] S. Fujita, M. Hagihara, S. Iwayama, et al., Novel pyrimidine derivative and novel pyridine derivative, Int. Patent Appl. WO 2002022588 A1 (2002)[17] S. Fujita, M. Hagihara, S. Iwayama, et al., Novel pyrimidine derivative and novel pyridine derivative, Int. Patent Appl. WO 2002022588 A1 (2002)

    18. [18] M. Watanabe, H. Koike, T. Ishiba, et al., Synthesis and biological activity of methanesulfonamide pyrimidine-and N-methanesulfonyl pyrrole-substituted 3,5-dihydroxy-6-heptenoates, a novel series of HMG-CoA reductase inhibitors, Bioorg. Med. Chem. 5 (1997) 437-444.[18] M. Watanabe, H. Koike, T. Ishiba, et al., Synthesis and biological activity of methanesulfonamide pyrimidine-and N-methanesulfonyl pyrrole-substituted 3,5-dihydroxy-6-heptenoates, a novel series of HMG-CoA reductase inhibitors, Bioorg. Med. Chem. 5 (1997) 437-444.

    19. [19] Some examples for the synthesis of Rosuvastatin involves 2-amino-pyrimidine-5-carboxylates, see:; (a) V. Niddam-Hildesheim, K. Chen, A process for the preparation of rosuvastatin involving a tempo-mediated oxidation step, Int. Patent Appl. WO 2006017357 (2006).; (b) S. Gudipati, S. Katkam, R.R. Sagyam, J.S. Kudavalli, Processes to produce intermediates for rosuvastatin, U.S. Patent 2006004200 (2006).; (c) S. Ahmad, J.A. Robl, K. Ngu, Pyrimidine and pyridine derivatives useful as hmgcoa reductase inhibitors and method of preparation thereof, Int. Patent Appl. WO 2005030758 (2005).; (d) N. End, Y. Richter, Process for the preparation of pyrimidine derivatives, Int. Patent Appl. WO 2004103977 (2004).[19] Some examples for the synthesis of Rosuvastatin involves 2-amino-pyrimidine-5-carboxylates, see:; (a) V. Niddam-Hildesheim, K. Chen, A process for the preparation of rosuvastatin involving a tempo-mediated oxidation step, Int. Patent Appl. WO 2006017357 (2006).; (b) S. Gudipati, S. Katkam, R.R. Sagyam, J.S. Kudavalli, Processes to produce intermediates for rosuvastatin, U.S. Patent 2006004200 (2006).; (c) S. Ahmad, J.A. Robl, K. Ngu, Pyrimidine and pyridine derivatives useful as hmgcoa reductase inhibitors and method of preparation thereof, Int. Patent Appl. WO 2005030758 (2005).; (d) N. End, Y. Richter, Process for the preparation of pyrimidine derivatives, Int. Patent Appl. WO 2004103977 (2004).

    20. [20] R. Capdeville, E. Buchdunger, J. Zimmermann, A. Matter, Glivec (ST1571, Imatinib), a rationally developed, targeted anticancer drug, Nat. Rev. Drug Discov. 1 (2002) 493-502.[20] R. Capdeville, E. Buchdunger, J. Zimmermann, A. Matter, Glivec (ST1571, Imatinib), a rationally developed, targeted anticancer drug, Nat. Rev. Drug Discov. 1 (2002) 493-502.

    21. [21] (a) P. Dorigo, D. Fraccarollo, G. Santostasi, et al., Synthesis and cardiotonic activity of novel pyrimidine derivatives: crystallographic and quantum chemical studies, J. Med. Chem. 39 (1996) 3671-3683; (b) S. Nagarajan, P. Shanmugavelan, M. Sathishkumar, et al., An eco-friendly water mediated synthesis of 1,2,3-triazolyl-2-aminopyrimidine hybrids as highly potent anti-bacterial agents, Chin. Chem. Lett. 25 (2014) 419-422.[21] (a) P. Dorigo, D. Fraccarollo, G. Santostasi, et al., Synthesis and cardiotonic activity of novel pyrimidine derivatives: crystallographic and quantum chemical studies, J. Med. Chem. 39 (1996) 3671-3683; (b) S. Nagarajan, P. Shanmugavelan, M. Sathishkumar, et al., An eco-friendly water mediated synthesis of 1,2,3-triazolyl-2-aminopyrimidine hybrids as highly potent anti-bacterial agents, Chin. Chem. Lett. 25 (2014) 419-422.

    22. [22] M. Matloobi, C.O. Kappe, Microwave-assisted solution-and solid-phase synthesis of 2-amino-4-arylpyrimidine derivatives, ACS. Comb. Sci. 9 (2007) 275-284.[22] M. Matloobi, C.O. Kappe, Microwave-assisted solution-and solid-phase synthesis of 2-amino-4-arylpyrimidine derivatives, ACS. Comb. Sci. 9 (2007) 275-284.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1361
  • HTML全文浏览量:  15
文章相关
  • 发布日期:  2015-02-07
  • 收稿日期:  2014-12-03
  • 网络出版日期:  2015-01-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章