Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands

Xiao-Xiao Liu Yuan Wang Wan-Guo Tian Weiting Yang Zhong-Ming Sun

Citation:  Xiao-Xiao Liu, Yuan Wang, Wan-Guo Tian, Weiting Yang, Zhong-Ming Sun. Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands[J]. Chinese Chemical Letters, 2015, 26(6): 641-645. doi: 10.1016/j.cclet.2015.03.024 shu

Heterometallic zinc uranium oxyfluorides incorporating imidazole ligands

    通讯作者: Yuan Wang,
    Zhong-Ming Sun,
摘要: Two heterometallic uranium oxyfluorides with hybrid networks were hydrothermally synthesized by incorporating two imidazoles, 1-(biphenyl-4-yl)-1H-imidazole (bpi) and 1,4-di(1H-imidazol-1-yl)benzene (dib), formulated as Zn(bpi)2(UO2)2(H2O)F6 (1) and Zn(dib)(UO2)F4·0.5H2O (2). Compound 1 consists of chains of edge-sharing UO2F5 and UO2F4(H2O) pentagonal bipyramids, which are linked by Zn(bpi)2 moieties to form the sheet structure with decorated bpi. While in compound 2, sheets of edgesharing dimers of UO2F5 pentagonal bipyramids and ZnF3N2 polyhedra are linked by dib, creating a pillared three-dimensional framework. The two compounds represent the few examples of heterometallic uranium oxyfluorides incorporating organic ligands. The syntheses, structure as well as the IR spectra, UV-vis spectra and luminescent properties of the bimetallic uranium oxyfluorides are studied.

English

  • 
    1. [1] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25 (2014) 1407-1410.[1] W. Wang, Y. Yuan, F.X. Sun, G.S. Zhu, Targeted synthesis of novel porous aromatic frameworks with selective separation of CO2/CH4 and CO2/N2, Chin. Chem. Lett. 25 (2014) 1407-1410.

    2. [2] Z.Y. Du, T.T. Xu, B. Huang, et al., Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials, Angew. Chem. Int. Ed. 54 (2015) 914-918.[2] Z.Y. Du, T.T. Xu, B. Huang, et al., Switchable guest molecular dynamics in a perovskite-like coordination polymer toward sensitive thermoresponsive dielectric materials, Angew. Chem. Int. Ed. 54 (2015) 914-918.

    3. [3] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25 (2014) 823-828.[3] Y.X. Sun, W.Y. Sun, Influence of temperature on metal-organic frameworks, Chin. Chem. Lett. 25 (2014) 823-828.

    4. [4] Y. Peng, V. Krungleviciute, I. Eryazici, et al., Methane storage in metal-organic frameworks: current records, surprise findings, and challenges, J. Am. Chem. Soc. 135 (2013) 11887-11894.[4] Y. Peng, V. Krungleviciute, I. Eryazici, et al., Methane storage in metal-organic frameworks: current records, surprise findings, and challenges, J. Am. Chem. Soc. 135 (2013) 11887-11894.

    5. [5] T. Zheng, M. Ren, S.S. Bao, L.M. Zheng, M2(pbtcH)(phen)2(H2O)2 [M(II)≡Co, Ni]: mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures, Chin. Chem. Lett. 25 (2014) 835-838.[5] T. Zheng, M. Ren, S.S. Bao, L.M. Zheng, M2(pbtcH)(phen)2(H2O)2 [M(II)≡Co, Ni]: mixed-ligated metal phosphonates based on 5-phosphonatophenyl-1,2,4-tricarboxylic acid showing double chain structures, Chin. Chem. Lett. 25 (2014) 835-838.

    6. [6] M.B. Andrews, C.L. Cahill, Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures, Chem. Rev. 113 (2013) 1121-1136.[6] M.B. Andrews, C.L. Cahill, Uranyl bearing hybrid materials: synthesis, speciation, and solid-state structures, Chem. Rev. 113 (2013) 1121-1136.

    7. [7] T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev. 266-267 (2014) 69-109.[7] T. Loiseau, I. Mihalcea, N. Henry, C. Volkringer, The crystal chemistry of uranium carboxylates, Coord. Chem. Rev. 266-267 (2014) 69-109.

    8. [8] K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Acc. Chem. Res. 44 (2011) 531-540.[8] K.X. Wang, J.S. Chen, Extended structures and physicochemical properties of uranyl-organic compounds, Acc. Chem. Res. 44 (2011) 531-540.

    9. [9] J. Qiu, P.C. Burns, Clusters of actinides with oxide, peroxide, or hydroxide bridges, Chem. Rev. 113 (2013) 1097-1120.[9] J. Qiu, P.C. Burns, Clusters of actinides with oxide, peroxide, or hydroxide bridges, Chem. Rev. 113 (2013) 1097-1120.

    10. [10] (a) Z.T. Yu, Z.L. Liao, Y.S. Jiang, et al., Construction of a microporous inorganic-organic hybrid compound with uranyl units, Chem. Commun. (2004) 1814-1815; (b) W. Chen, H.M. Yuan, J.Y. Wang, et al., Synthesis, structure, and photoelectronic effects of a uranium-zinc-organic coordination polymer containing infinite metal oxide sheets, J. Am. Chem. Soc. 125 (2003) 9266-9267.[10] (a) Z.T. Yu, Z.L. Liao, Y.S. Jiang, et al., Construction of a microporous inorganic-organic hybrid compound with uranyl units, Chem. Commun. (2004) 1814-1815; (b) W. Chen, H.M. Yuan, J.Y. Wang, et al., Synthesis, structure, and photoelectronic effects of a uranium-zinc-organic coordination polymer containing infinite metal oxide sheets, J. Am. Chem. Soc. 125 (2003) 9266-9267.

    11. [11] (a) J. Olchowka, C. Falaise, C. Volkringer, N. Henry, T. Loiseau, Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration, Chem. Eur. J. 19 (2013) 2012-2022; (b) C. Volkringer, N. Henry, S. Grandjean, T. Loiseau, Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: a unique case of heterometallic cation-cation interaction with UVI = O-LnIII Bonding (Ln = Ce, Nd), J. Am. Chem. Soc. 134 (2012) 1275-1283; (c) J. Olchowka, C. Volkringer, N. Henry, T. Loiseau, Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO2)Zn(H2O)4(H2-mel)·2H2O, Eur. J. Inorg. Chem. 2013 (2013) 2109-2114.[11] (a) J. Olchowka, C. Falaise, C. Volkringer, N. Henry, T. Loiseau, Structural observations of heterometallic uranyl copper(II) carboxylates and their solid-state topotactic transformation upon dehydration, Chem. Eur. J. 19 (2013) 2012-2022; (b) C. Volkringer, N. Henry, S. Grandjean, T. Loiseau, Uranyl and/or rare-earth mellitates in extended organic-inorganic networks: a unique case of heterometallic cation-cation interaction with UVI = O-LnIII Bonding (Ln = Ce, Nd), J. Am. Chem. Soc. 134 (2012) 1275-1283; (c) J. Olchowka, C. Volkringer, N. Henry, T. Loiseau, Synthesis, structural characterization, and dehydration analysis of uranyl zinc mellitate, (UO2)Zn(H2O)4(H2-mel)·2H2O, Eur. J. Inorg. Chem. 2013 (2013) 2109-2114.

    12. [12] (a) P. Thuéry, Molecular and polymeric uranyl and thorium complexes with sulfonate-containing ligands, Eur. J. Inorg. Chem. 2014 (2014) 58-68; (b) P. Thuéry, Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate, Inorg. Chem. 52 (2013) 435-447.[12] (a) P. Thuéry, Molecular and polymeric uranyl and thorium complexes with sulfonate-containing ligands, Eur. J. Inorg. Chem. 2014 (2014) 58-68; (b) P. Thuéry, Sulfonate complexes of actinide ions: structural diversity in uranyl complexes with 2-sulfobenzoate, Inorg. Chem. 52 (2013) 435-447.

    13. [13] (a) P.M. Cantos, L.J. Jouffret, R.E. Wilson, P.C. Burns, C.L. Cahill, Series of uranyl-4,4'-biphenyldicarboxylates and an occurrence of a cation-cation interaction: hydrothermal synthesis and in situ Raman studies, Inorg. Chem. 52 (2013) 9487-9495; (b) K.E. Knope, D.T. de Lill, C.E. Rowland, et al., Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer, Inorg. Chem. 51 (2012) 201-206.[13] (a) P.M. Cantos, L.J. Jouffret, R.E. Wilson, P.C. Burns, C.L. Cahill, Series of uranyl-4,4'-biphenyldicarboxylates and an occurrence of a cation-cation interaction: hydrothermal synthesis and in situ Raman studies, Inorg. Chem. 52 (2013) 9487-9495; (b) K.E. Knope, D.T. de Lill, C.E. Rowland, et al., Uranyl sensitization of samarium(III) luminescence in a two-dimensional coordination polymer, Inorg. Chem. 51 (2012) 201-206.

    14. [14] (a) T. Tian, W.T. Yang, H. Wang, et al., Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels, Inorg. Chem. 52 (2013) 7100-7106; (b) T. Tian, W.T. Yang, H. Wang, S. Dang, Z.M. Sun, Flexible diphosphonic acids for the isolation of uranyl hybrids with heterometallic UVI≡O-ZnII cation-cation interactions, Inorg. Chem. 52 (2013) 8288-8290.[14] (a) T. Tian, W.T. Yang, H. Wang, et al., Syntheses and structures of uranyl ethylenediphosphonates: from layers to elliptical nanochannels, Inorg. Chem. 52 (2013) 7100-7106; (b) T. Tian, W.T. Yang, H. Wang, S. Dang, Z.M. Sun, Flexible diphosphonic acids for the isolation of uranyl hybrids with heterometallic UVI≡O-ZnII cation-cation interactions, Inorg. Chem. 52 (2013) 8288-8290.

    15. [15] (a) D.W. Juan, T.E. Albrecht-Schmitt, Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks, Chem. Commun. 48 (2012) 3827-3829; (b) P.O. Adelani, T.E. Albrecht-Schmitt, Differential ion exchange in elliptical uranyl diphosphonate nanotubules, Angew. Chem. Int. Ed. 49 (2010) 8909-8911; (c) A.G.D. Nelson, E.V. Alekseev, R.C. Ewing, T.E. Albrecht-Schmitt, Barium uranyl diphosphonates, J. Solid State Chem. 192 (2012) 153-160.[15] (a) D.W. Juan, T.E. Albrecht-Schmitt, Chiral uranium phosphonates constructed from achiral units with three-dimensional frameworks, Chem. Commun. 48 (2012) 3827-3829; (b) P.O. Adelani, T.E. Albrecht-Schmitt, Differential ion exchange in elliptical uranyl diphosphonate nanotubules, Angew. Chem. Int. Ed. 49 (2010) 8909-8911; (c) A.G.D. Nelson, E.V. Alekseev, R.C. Ewing, T.E. Albrecht-Schmitt, Barium uranyl diphosphonates, J. Solid State Chem. 192 (2012) 153-160.

    16. [16] (a) M.B. Doran, B.E. Cockbain, A.J. Norquist, D. O'Hare, The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates, Dalton Trans. (2004) 3810-3814; (b) K. Min Ok, M.B. Doran, D. O'Hare, [(CH3)2NH(CH2)2NH(CH3)2][(UO2)2 F2(HPO4)2]: a new organically templated layered uranium phosphate fluoride -synthesis, structure, characterization, and ion-exchange reactions, Dalton Trans. (2007) 3325-3329; (c) K. Min Ok, D. O'Hare, Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride,[N(C2H5)4]2[(UO2)4(OH2)3F10], J. Solid State Chem. 180 (2007) 446-452.[16] (a) M.B. Doran, B.E. Cockbain, A.J. Norquist, D. O'Hare, The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates, Dalton Trans. (2004) 3810-3814; (b) K. Min Ok, M.B. Doran, D. O'Hare, [(CH3)2NH(CH2)2NH(CH3)2][(UO2)2 F2(HPO4)2]: a new organically templated layered uranium phosphate fluoride -synthesis, structure, characterization, and ion-exchange reactions, Dalton Trans. (2007) 3325-3329; (c) K. Min Ok, D. O'Hare, Hydrothermal synthesis, crystal structure, and characterization of a new pseudo-two-dimensional uranyl oxyfluoride,[N(C2H5)4]2[(UO2)4(OH2)3F10], J. Solid State Chem. 180 (2007) 446-452.

    17. [17] (a) C.S. Lee, C.H. Lin, S.L. Wang, K.H. Lii, [Na7UVIO2(UVO)2(UV/VIO2)2Si4O16]: a mixed-valence uranium silicate, Angew. Chem. Int. Ed. 49 (2010) 4254-4256; (b) Q.B. Nguyen, H.K. Liu, W.J. Chang, K.H. Lii, Cs8UVI(UVIO2)3(Ge3O9)3·3H2O: a mixed-valence uranium germanate with 9-ring channels, Inorg. Chem. 50 (2011) 4241-4243.[17] (a) C.S. Lee, C.H. Lin, S.L. Wang, K.H. Lii, [Na7UVIO2(UVO)2(UV/VIO2)2Si4O16]: a mixed-valence uranium silicate, Angew. Chem. Int. Ed. 49 (2010) 4254-4256; (b) Q.B. Nguyen, H.K. Liu, W.J. Chang, K.H. Lii, Cs8UVI(UVIO2)3(Ge3O9)3·3H2O: a mixed-valence uranium germanate with 9-ring channels, Inorg. Chem. 50 (2011) 4241-4243.

    18. [18] P.S. Halasyamani, S.M. Walker, D. O'Hare, The first open framework actinide material (C4N2H12)U2O4F6 (MUF-1), J. Am. Chem. Soc. 121 (1999) 7415-7416.[18] P.S. Halasyamani, S.M. Walker, D. O'Hare, The first open framework actinide material (C4N2H12)U2O4F6 (MUF-1), J. Am. Chem. Soc. 121 (1999) 7415-7416.

    19. [19] K. Min Ok, M.B. Doran, D. O'Hare, [N(CH3)4][(UO2)2F5]: a new organically templated open-framework uranium oxide fluoride (MUF-2), J. Mater. Chem. 16 (2006) 3366-3368.[19] K. Min Ok, M.B. Doran, D. O'Hare, [N(CH3)4][(UO2)2F5]: a new organically templated open-framework uranium oxide fluoride (MUF-2), J. Mater. Chem. 16 (2006) 3366-3368.

    20. [20] C.M. Wang, C.H. Liao, H.M. Kao, K.H. Lii, Hydrothermal synthesis and characterization of (UO2)2F8(H2O)2Zn2(4,4'-bpy)2·(4,4'-bpy), a mixed-metal uranyl aquofluoride with a pillared layer structure, Inorg. Chem. 44 (2005) 6294-6298.[20] C.M. Wang, C.H. Liao, H.M. Kao, K.H. Lii, Hydrothermal synthesis and characterization of (UO2)2F8(H2O)2Zn2(4,4'-bpy)2·(4,4'-bpy), a mixed-metal uranyl aquofluoride with a pillared layer structure, Inorg. Chem. 44 (2005) 6294-6298.

    21. [21] (a) W.T. Yang, F.Y. Yi, T. Tian, W.G. Tian, S.Z. Sun, Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands, Cryst. Growth Des. 14 (2014) 1366-1374; (b) W.T. Yang, S. Dang, H. Wang, et al., Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids, Inorg. Chem. 52 (2013) 12394-12402.[21] (a) W.T. Yang, F.Y. Yi, T. Tian, W.G. Tian, S.Z. Sun, Structural variation within heterometallic uranyl hybrids based on flexible alkyldiphosphonate ligands, Cryst. Growth Des. 14 (2014) 1366-1374; (b) W.T. Yang, S. Dang, H. Wang, et al., Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono-and polycarboxylic acids, Inorg. Chem. 52 (2013) 12394-12402.

    22. [22] S.V. Matthew, H.W. Timothy, S-nitrosothiol and nitric oxide reactivity at zinc thiolates, Inorg. Chem. 48 (2009) 5605-5607.[22] S.V. Matthew, H.W. Timothy, S-nitrosothiol and nitric oxide reactivity at zinc thiolates, Inorg. Chem. 48 (2009) 5605-5607.

    23. [23] A.M.S. Obbade, M. Rivenet, C. Renard, F. Abraham, [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology, J. Solid State Chem. 185 (2012) 180-186.[23] A.M.S. Obbade, M. Rivenet, C. Renard, F. Abraham, [La(UO2)V2O7][(UO2)(VO4)] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology, J. Solid State Chem. 185 (2012) 180-186.

    24. [24] T.G. Parker, J.N. Cross, M.J. Polinski, J. Lin, T.E. Albrecht-Schmitt, Ionothermal and hydrothermal flux syntheses of five new uranyl phosphonates, Cryst. Growth Des. 14 (2014) 228-235.[24] T.G. Parker, J.N. Cross, M.J. Polinski, J. Lin, T.E. Albrecht-Schmitt, Ionothermal and hydrothermal flux syntheses of five new uranyl phosphonates, Cryst. Growth Des. 14 (2014) 228-235.

    25. [25] P.O. Adelani, T.E. Albrecht-Schmitt, Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents, Cryst. Growth Des. 11 (2011) 4227-4237.[25] P.O. Adelani, T.E. Albrecht-Schmitt, Syntheses of uranyl diphosphonate compounds using encapsulated cations as structure directing agents, Cryst. Growth Des. 11 (2011) 4227-4237.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1309
  • HTML全文浏览量:  24
文章相关
  • 发布日期:  2015-03-27
  • 收稿日期:  2015-01-21
  • 网络出版日期:  2015-03-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章