Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes

Yuan-Ye Jiang Hai-Zhu Yu Jing Shi

Citation:  Yuan-Ye Jiang, Hai-Zhu Yu, Jing Shi. Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes[J]. Chinese Chemical Letters, 2015, 26(1): 58-62. doi: 10.1016/j.cclet.2014.10.021 shu

Mechanistic study on the regioselectivity of Co-catalyzed hydroacylation of 1,3-dienes

    通讯作者: Hai-Zhu Yu,
    Jing Shi,
  • 基金项目:

    We thank the NSFC (Nos. 21325208, 21172209, 21361140372, 21202006) (Nos. 21325208, 21172209, 21361140372, 21202006)

    SRFDP (No. 20123402110051) (No. 20123402110051)

    FRFCU (No. WK2060190025) (No. WK2060190025)

    CAS (No. KJCX2-EW-J02) (No. KJCX2-EW-J02)

    Fok Ying Tung Education Foundation, Anhui Provincial Natural Science Foundation (No. 1308085QB38) (No. 1308085QB38)

摘要: Density functional theory (DFT) method was used to explore the origin of the regioselectivity of Cocatalyzed hydroacylation of 1,3-dienes. The reaction of 2-methyl-1,3-butadiene and benzaldehyde with 1,3-bis(diphenylphosphino)propane ligand was chosen as the model reaction. The energies of the intermediates and transition states in the stages of oxidative cyclization, β-H elimination and C-H reductive elimination were investigated. Computational results show that β-H elimination is the ratedetermining step for the whole catalytic cycle. C1-Selective oxidative cyclization is favored over C4-selective oxidative cyclization. Besides, C4-selective oxidative cyclization is kinetically disfavored than all the steps in C1-hydroacylation mechanisms, consistent with the experimentally obtained C1- selective hydroacylation products. Analyzing the reason for such observation, we suggest that both electronic and steric effects contribute to the C1-selectivity. On the electronic aspect, C1 is more electron rich than C4 due to the methyl group on C2, which makes the electrophilic attack of aldehyde carbon on C1 more favorable. On the steric aspect, the methyl group locates farther from the ligands in the transition state of C1-selective oxidative cyclization than in that of C4-selective oxidative cyclization.

English

  • 
    1. [1] C. Wang, Y. Fu, L. Liu, Q.X. Guo, New advance of Fe- and Co-catalyzed C-C coupling reactions, Chin. J. Org. Chem. 27 (2007) 703-723.[1] C. Wang, Y. Fu, L. Liu, Q.X. Guo, New advance of Fe- and Co-catalyzed C-C coupling reactions, Chin. J. Org. Chem. 27 (2007) 703-723.

    2. [2] H. Pellissier, H. Clavier, Enantioselective cobalt-catalyzed transformations, Chem. Rev. 114 (2014) 2775-2823.[2] H. Pellissier, H. Clavier, Enantioselective cobalt-catalyzed transformations, Chem. Rev. 114 (2014) 2775-2823.

    3. [3] F. Shibahara, J.F. Bower, M.J. Krische, Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C-C bond-forming transfer hydrogenation: synthesis of β,γ-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 14120-14122.[3] F. Shibahara, J.F. Bower, M.J. Krische, Diene hydroacylation from the alcohol or aldehyde oxidation level via ruthenium-catalyzed C-C bond-forming transfer hydrogenation: synthesis of β,γ-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 14120-14122.

    4. [4] S. Omura, T. Fukuyama, J. Horiguchi, Y. Murakami, I. Ryu, Ruthenium hydridecatalyzed addition of aldehydes to dienes leading to β,γ-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 14094-14095.[4] S. Omura, T. Fukuyama, J. Horiguchi, Y. Murakami, I. Ryu, Ruthenium hydridecatalyzed addition of aldehydes to dienes leading to β,γ-unsaturated ketones, J. Am. Chem. Soc. 130 (2008) 14094-14095.

    5. [5] Q.A. Chen, D.K. Kim, V.M. Dong, Regioselective hydroacylation of 1,3-dienes by cobalt catalysis, J. Am. Chem. Soc. 136 (2014) 3772-3775.[5] Q.A. Chen, D.K. Kim, V.M. Dong, Regioselective hydroacylation of 1,3-dienes by cobalt catalysis, J. Am. Chem. Soc. 136 (2014) 3772-3775.

    6. [6] M.A. Bohn, A. Schmidt, G. Hilt, M. Dindaroğlu, H. Schmalz, Cobalt-catalyzed 1,4- hydrobutadienylation of 1-Aryl-1,3-dienes with 2,3-dimethyl-1,3-butadiene, Angew. Chem. Int. Ed. 50 (2011) 9689-9693.[6] M.A. Bohn, A. Schmidt, G. Hilt, M. Dindaroğlu, H. Schmalz, Cobalt-catalyzed 1,4- hydrobutadienylation of 1-Aryl-1,3-dienes with 2,3-dimethyl-1,3-butadiene, Angew. Chem. Int. Ed. 50 (2011) 9689-9693.

    7. [7] L. Fiebig, J. Kuttner, G. Hilt, et al., Cobalt catalysis in the gas phase: experimental characterization of cobalt(I) complexes as intermediates in regioselective Diels- Alder reactions, J. Org. Chem. 78 (2013) 10485-10493.[7] L. Fiebig, J. Kuttner, G. Hilt, et al., Cobalt catalysis in the gas phase: experimental characterization of cobalt(I) complexes as intermediates in regioselective Diels- Alder reactions, J. Org. Chem. 78 (2013) 10485-10493.

    8. [8] Z.W. Yang, H.Z. Yu, Y. Fu, Mechanistic study on ligand-controlled cobalt-catalyzed regioselectivity switchable hydroarylation of styrenes, Chem. Eur. J. 19 (2013) 12093-12103.[8] Z.W. Yang, H.Z. Yu, Y. Fu, Mechanistic study on ligand-controlled cobalt-catalyzed regioselectivity switchable hydroarylation of styrenes, Chem. Eur. J. 19 (2013) 12093-12103.

    9. [9] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09 Revision D.01, Wallingford, CT, 2013.[9] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 09 Revision D.01, Wallingford, CT, 2013.

    10. [10] X.J.Du, Y.H. Tang, X. Zhang, M. Lei,A theoretical study on the alkene insertion step in Rh-Yanphos catalyzed hydroformylation, Chin. Chem. Lett. 24 (2013) 1083-1086.[10] X.J.Du, Y.H. Tang, X. Zhang, M. Lei,A theoretical study on the alkene insertion step in Rh-Yanphos catalyzed hydroformylation, Chin. Chem. Lett. 24 (2013) 1083-1086.

    11. [11] T.C. Jiang, Z.Y. Wang, B.B. Du, S.S. Zhao, Theoretical characterization of hole mobility in BTBPD, Chin. Chem. Lett. 24 (2013) 945-948.[11] T.C. Jiang, Z.Y. Wang, B.B. Du, S.S. Zhao, Theoretical characterization of hole mobility in BTBPD, Chin. Chem. Lett. 24 (2013) 945-948.

    12. [12] T.J. Gong, Y.Y. Jiang, Y. Fu, Rh(I)-catalyzed borylation of primary alkyl chlorides, Chin. Chem. Lett. 25 (2014) 397-400.[12] T.J. Gong, Y.Y. Jiang, Y. Fu, Rh(I)-catalyzed borylation of primary alkyl chlorides, Chin. Chem. Lett. 25 (2014) 397-400.

    13. [13] Q. Zhou, Y. Li, 1,3-Cationic alkylidene migration of nonclassical carbocation: a density functional theory study on gold(I)-catalyzed cycloisomerization of 1,5-enynes containing cyclopropene moiety, J. Am. Chem. Soc. 136 (2014) 1505-1513.[13] Q. Zhou, Y. Li, 1,3-Cationic alkylidene migration of nonclassical carbocation: a density functional theory study on gold(I)-catalyzed cycloisomerization of 1,5-enynes containing cyclopropene moiety, J. Am. Chem. Soc. 136 (2014) 1505-1513.

    14. [14] B. Lu, Y. Li, Y. Wang, et al., [3,3]-Sigmatropic rearrangement versus carbene formation in gold-catalyzed transformations of alkynyl aryl sulfoxides: mechanistic studies and expanded reaction scope, J. Am. Chem. Soc. 135 (2013) 8512-8524.[14] B. Lu, Y. Li, Y. Wang, et al., [3,3]-Sigmatropic rearrangement versus carbene formation in gold-catalyzed transformations of alkynyl aryl sulfoxides: mechanistic studies and expanded reaction scope, J. Am. Chem. Soc. 135 (2013) 8512-8524.

    15. [15] R. Shang, Z.W. Yang, Y. Wang, S.L. Zhang, L. Liu, Palladium-catalyzed decarboxylative couplings of 2-(2-azaaryl)acetates with aryl halides and triflates, J. Am. Chem. Soc. 132 (2010) 14391-14393.[15] R. Shang, Z.W. Yang, Y. Wang, S.L. Zhang, L. Liu, Palladium-catalyzed decarboxylative couplings of 2-(2-azaaryl)acetates with aryl halides and triflates, J. Am. Chem. Soc. 132 (2010) 14391-14393.

    16. [16] Y.F. Yang, G.J. Cheng, P. Liu, et al., Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity, J. Am. Soc. Chem. 136 (2014) 344-355.[16] Y.F. Yang, G.J. Cheng, P. Liu, et al., Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity, J. Am. Soc. Chem. 136 (2014) 344-355.

    17. [17] S. Zhang, L. Shi, Y. Ding, Theoretical analysis of the mechanism of palladium(Ⅱ) acetate-catalyzed oxidative Heck coupling of electron-deficient arenes with alkenes: effects of the pyridine-type ancillary ligand and origins of the metaregioselectivity, J. Am. Chem. Soc. 133 (2011) 20218-20229.[17] S. Zhang, L. Shi, Y. Ding, Theoretical analysis of the mechanism of palladium(Ⅱ) acetate-catalyzed oxidative Heck coupling of electron-deficient arenes with alkenes: effects of the pyridine-type ancillary ligand and origins of the metaregioselectivity, J. Am. Chem. Soc. 133 (2011) 20218-20229.

    18. [18] L. Li, F. Wu, S. Zhang, et al., A heteroleptic cyclometalated iridium(Ⅲ) fluorophenylpyridine complex from partial defluorohydrogenation reaction: synthesis, photophysical properties and mechanistic insights, Dalton Trans. 42 (2013) 4539-4543.[18] L. Li, F. Wu, S. Zhang, et al., A heteroleptic cyclometalated iridium(Ⅲ) fluorophenylpyridine complex from partial defluorohydrogenation reaction: synthesis, photophysical properties and mechanistic insights, Dalton Trans. 42 (2013) 4539-4543.

    19. [19] S. Qu, Y. Dang, C. Song, et al., Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: crucial role of proton-transfer shuttles in the PNP-Ir System, J. Am. Chem. Soc. 136 (2014) 4974-4991.[19] S. Qu, Y. Dang, C. Song, et al., Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: crucial role of proton-transfer shuttles in the PNP-Ir System, J. Am. Chem. Soc. 136 (2014) 4974-4991.

    20. [20] Y. Dang, S. Qu, Z.X. Wang, X. Wang, A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioselectivities, J. Am. Chem. Soc. 136 (2014) 986-998.[20] Y. Dang, S. Qu, Z.X. Wang, X. Wang, A computational mechanistic study of an unprecedented Heck-type relay reaction: insight into the origins of regio- and enantioselectivities, J. Am. Chem. Soc. 136 (2014) 986-998.

    21. [21] Z. Dong, C.H. Liu, Y. Wang, M. Lin, Z.X. Yu, Gold(I)-catalyzed endo-selective intramolecular a-alkenylation of b-yne-furans: synthesis of seven-memberedring- fused furans and DFT calculations, Angew. Chem. Int. Ed. 52 (2013) 14157-14161.[21] Z. Dong, C.H. Liu, Y. Wang, M. Lin, Z.X. Yu, Gold(I)-catalyzed endo-selective intramolecular a-alkenylation of b-yne-furans: synthesis of seven-memberedring- fused furans and DFT calculations, Angew. Chem. Int. Ed. 52 (2013) 14157-14161.

    22. [22] Y. Fu, Z. Li, S. Liang, Q.X. Guo, L. Liu, Mechanism for carbon-oxygen bond-forming reductive elimination from palladium(IV) complexes, Organometallics 27 (2008) 3736-3742.[22] Y. Fu, Z. Li, S. Liang, Q.X. Guo, L. Liu, Mechanism for carbon-oxygen bond-forming reductive elimination from palladium(IV) complexes, Organometallics 27 (2008) 3736-3742.

    23. [23] H.Z. Yu, Y.Y. Jiang, Y. Fu, L. Liu, Alternative mechanistic explanation for liganddependent selectivities in copper-catalyzed N- and O-arylation reactions, J. Am. Chem. Soc. 132 (2010) 18078-18091.[23] H.Z. Yu, Y.Y. Jiang, Y. Fu, L. Liu, Alternative mechanistic explanation for liganddependent selectivities in copper-catalyzed N- and O-arylation reactions, J. Am. Chem. Soc. 132 (2010) 18078-18091.

    24. [24] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (2008) 215-241.[24] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120 (2008) 215-241.

    25. [25] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270-283.[25] P.J. Hay, W.R. Wadt, Ab initio effective core potentials for molecular calculations - potentials for the transition-metal atoms Sc to Hg, J. Chem. Phys. 82 (1985) 270-283.

    26. [26] Z. Li, S.L. Zhang, Y. Fu, Q.X. Guo, L. Liu, Mechanism of Ni-catalyzed selective C-O bond activation in cross-coupling of aryl esters, J. Am. Chem. Soc. 131 (2009) 8815-8823.[26] Z. Li, S.L. Zhang, Y. Fu, Q.X. Guo, L. Liu, Mechanism of Ni-catalyzed selective C-O bond activation in cross-coupling of aryl esters, J. Am. Chem. Soc. 131 (2009) 8815-8823.

    27. [27] Z. Li, Y. Fu, S.L. Zhang, Q.X. Guo, L. Liu, Heck-type reactions of imine derivatives: a DFT study, Chem. Asian J. 5 (2010) 1475-1486.[27] Z. Li, Y. Fu, S.L. Zhang, Q.X. Guo, L. Liu, Heck-type reactions of imine derivatives: a DFT study, Chem. Asian J. 5 (2010) 1475-1486.

    28. [28] Y.Y. Jiang, Y. Fu, L. Liu, Mechanism of palladium-catalyzed decarboxylative crosscoupling between cyanoacetate salts and aryl halides, Sci. China Chem. 55 (2012) 2057-2062.[28] Y.Y. Jiang, Y. Fu, L. Liu, Mechanism of palladium-catalyzed decarboxylative crosscoupling between cyanoacetate salts and aryl halides, Sci. China Chem. 55 (2012) 2057-2062.

    29. [29] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009) 6378-6396.[29] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B 113 (2009) 6378-6396.

    30. [30] Q. Meng, F. Wang, M. Li, Ruthenium hydride-catalyzed regioselective addition of benzaldehyde to dienes leading to β,γ-unsaturated ketones: a DFT study, J. Mol. Model 18 (2012) 4955-4963.[30] Q. Meng, F. Wang, M. Li, Ruthenium hydride-catalyzed regioselective addition of benzaldehyde to dienes leading to β,γ-unsaturated ketones: a DFT study, J. Mol. Model 18 (2012) 4955-4963.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1244
  • HTML全文浏览量:  7
文章相关
  • 发布日期:  2014-11-01
  • 收稿日期:  2014-07-08
  • 网络出版日期:  2014-09-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章