Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient

Li-Xiang Zhang Yu-Bin Zheng Sheng-Lin Cai Xiao-Hong Cao Yao-Qun Li

Citation:  Li-Xiang Zhang, Yu-Bin Zheng, Sheng-Lin Cai, Xiao-Hong Cao, Yao-Qun Li. Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient[J]. Chinese Chemical Letters, 2015, 26(1): 43-46. doi: 10.1016/j.cclet.2014.08.001 shu

Modulating ion current rectification generating high energy output in a single glass conical nanopore channel by concentration gradient

    通讯作者: Yao-Qun Li,
  • 基金项目:

    We are grateful for the financial support from the National Natural Science Foundation of China (Nos. 21375111, 21127005,20975084) (Nos. 21375111, 21127005,20975084)

    the Ph.D. Programs Foundation of the Ministry of Education of China (No. 20110121110011). (No. 20110121110011)

摘要: Inspired by biological systems that have the inherent skill to generate considerable bioelectricity from the salt content in fluids with highly selective ion channels and pumps on cellmembranes, herein, a fully abiotic, single glass conical nanopores energy-harvesting is demonstrated. Ion current rectification (ICR) in negatively charged glass conical nanopores is shown to be controlled by the electrolyte concentration gradient depending on the direction of ion diffusion. The degree of ICR is enhanced with the increasing forward concentration difference. An unusual rectification inversion is observed when the concentration gradient is reversely applied. The maximum power output with the individual nanopore approaches 104 pW. This facile and cost-efficient energy-harvesting system has the potential to power tiny biomedical devices or construct future clean-energy recovery plants.

English

  • 
    1. [1] B. Kumar, S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy 1 (2012) 342-355.[1] B. Kumar, S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy 1 (2012) 342-355.

    2. [2] C. Xu, C.F. Pan, Y. Liu, Z.L. Wang, Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems, Nano Energy 1 (2012) 259-272.[2] C. Xu, C.F. Pan, Y. Liu, Z.L. Wang, Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems, Nano Energy 1 (2012) 259-272.

    3. [3] B.X. Xu, L. Liu, H. Lim, Y. Qiao, X. Chen, Harvesting energy from low-grade heat based on nanofluids, Nano Energy 1 (2012) 805-811.[3] B.X. Xu, L. Liu, H. Lim, Y. Qiao, X. Chen, Harvesting energy from low-grade heat based on nanofluids, Nano Energy 1 (2012) 805-811.

    4. [4] W. Guo, L.X. Cao, J.C. Xia, et al., Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater. 20 (2010) 1339-1344.[4] W. Guo, L.X. Cao, J.C. Xia, et al., Energy harvesting with single-ion-selective nanopores: a concentration-gradient-driven nanofluidic power source, Adv. Funct. Mater. 20 (2010) 1339-1344.

    5. [5] Z.S. Siwy, Ion-current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater. 6 (2006) 735-746.[5] Z.S. Siwy, Ion-current rectification in nanopores and nanotubes with broken symmetry, Adv. Funct. Mater. 6 (2006) 735-746.

    6. [6] Z. Siwy, E. Heins, C.C. Harrell, P. Kohli, C.R. Martin, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc. 35 (2004) 10850-10851.[6] Z. Siwy, E. Heins, C.C. Harrell, P. Kohli, C.R. Martin, Conical-nanotube ion-current rectifiers: the role of surface charge, J. Am. Chem. Soc. 35 (2004) 10850-10851.

    7. [7] Z.S. Siwy, C.R. Martin, Tuning ion current rectification in synthetic nanotubes, Controlled Nanoscale Motion, vol. 711, Springer, Berlin, Heidelberg, 2007, pp. 349-365.[7] Z.S. Siwy, C.R. Martin, Tuning ion current rectification in synthetic nanotubes, Controlled Nanoscale Motion, vol. 711, Springer, Berlin, Heidelberg, 2007, pp. 349-365.

    8. [8] M. Ali, B. Schiedt, K. Healy, R. Neumann,W. Ensinger, Modifying the surface charge of single track-etched conical nanopores in polyimide, Nanotechnology 8 (2008) 085713.[8] M. Ali, B. Schiedt, K. Healy, R. Neumann,W. Ensinger, Modifying the surface charge of single track-etched conical nanopores in polyimide, Nanotechnology 8 (2008) 085713.

    9. [9] Z. Siwy, I.D. Kosińska, A. Fuliński, C.R. Martin, Asymmetric diffusion through synthetic nanopores, Phys. Rev. Lett. 4 (2005), 048102/1-048102/4.[9] Z. Siwy, I.D. Kosińska, A. Fuliński, C.R. Martin, Asymmetric diffusion through synthetic nanopores, Phys. Rev. Lett. 4 (2005), 048102/1-048102/4.

    10. [10] R.Y. Chein, B.G. Chung, Numerical study of ionic current rectification through nonuniformly charged micro/nanochannel systems, J. Appl. Electrochem. 43 (2013) 1197-1206.[10] R.Y. Chein, B.G. Chung, Numerical study of ionic current rectification through nonuniformly charged micro/nanochannel systems, J. Appl. Electrochem. 43 (2013) 1197-1206.

    11. [11] W. Guo, Y. Tian, L. Jiang, Asymmetric ion transport through ion-channel-mimetic solid-state nanopores, Acc. Chem. Res. 46 (2013) 2834-2846.[11] W. Guo, Y. Tian, L. Jiang, Asymmetric ion transport through ion-channel-mimetic solid-state nanopores, Acc. Chem. Res. 46 (2013) 2834-2846.

    12. [12] I.D. Kosinska, A. Fulinski, Asymmetric nanodiffusion, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 72 (1) (2005), 011201/1-011201/7.[12] I.D. Kosinska, A. Fulinski, Asymmetric nanodiffusion, Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 72 (1) (2005), 011201/1-011201/7.

    13. [13] G.X. Li, X.Q. Lin, A glass nanopore electrode for single molecule detection, Chin. Chem. Lett. 21 (2010) 1115-1118.[13] G.X. Li, X.Q. Lin, A glass nanopore electrode for single molecule detection, Chin. Chem. Lett. 21 (2010) 1115-1118.

    14. [14] B. Vilozny, A.L. Wollenberg, P. Acis, et al., Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette, Nanoscale 5 (2013) 9214-9221.[14] B. Vilozny, A.L. Wollenberg, P. Acis, et al., Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette, Nanoscale 5 (2013) 9214-9221.

    15. [15] H.C. Zhang, X. Hou, L. Zeng, et al., Bio-inspired artificial single ion pump, J. Am. Chem. Soc. 43 (2013) 16102-16110.[15] H.C. Zhang, X. Hou, L. Zeng, et al., Bio-inspired artificial single ion pump, J. Am. Chem. Soc. 43 (2013) 16102-16110.

    16. [16] M. Ali, S. Mafe, P. Ramirez, R. Neumann, W. Ensinger, Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains, Langmuir 25 (2009) 11993-11997.[16] M. Ali, S. Mafe, P. Ramirez, R. Neumann, W. Ensinger, Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains, Langmuir 25 (2009) 11993-11997.

    17. [17] J. Cervera, P. Ramirez, S. Mafe, P. Stroeve, Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications, Electrochim. Acta 56 (2011) 4504-4511.[17] J. Cervera, P. Ramirez, S. Mafe, P. Stroeve, Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications, Electrochim. Acta 56 (2011) 4504-4511.

    18. [18] L.X. Zhang, X.H. Cao, Y.B. Zheng, Y.Q. Li, Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification, Electrochem. Commun. (2010) 1249-1252.[18] L.X. Zhang, X.H. Cao, Y.B. Zheng, Y.Q. Li, Covalent modification of single glass conical nanopore channel with 6-carboxymethyl-chitosan for pH modulated ion current rectification, Electrochem. Commun. (2010) 1249-1252.

    19. [19] L.X. Zhang, S.L. Cai, Y.B. Zheng, X.H. Cao, Y.Q. Li, Smart homopolymer poly (2- (dimethylamino) ethyl methacrylate) modification to single glass conical nanopore channels: proton and thermo dual-stimuli actuated highly efficient iongating, Adv. Funct. Mater. 11 (2011) 2103-2107.[19] L.X. Zhang, S.L. Cai, Y.B. Zheng, X.H. Cao, Y.Q. Li, Smart homopolymer poly (2- (dimethylamino) ethyl methacrylate) modification to single glass conical nanopore channels: proton and thermo dual-stimuli actuated highly efficient iongating, Adv. Funct. Mater. 11 (2011) 2103-2107.

    20. [20] Y.Q. Li, Y.B. Zheng, R.N. Zare, Electrical, optical, and docking properties of conical nanopores, ACS Nano 6 (2012) 993-997.[20] Y.Q. Li, Y.B. Zheng, R.N. Zare, Electrical, optical, and docking properties of conical nanopores, ACS Nano 6 (2012) 993-997.

    21. [21] B. Zhang, J. Galusha, P.G. Shiozawa, et al., Bench-top method for fabricating glasssealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size, Anal. Chem. 13 (2007) 4778-4787.[21] B. Zhang, J. Galusha, P.G. Shiozawa, et al., Bench-top method for fabricating glasssealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size, Anal. Chem. 13 (2007) 4778-4787.

    22. [22] X.H. Cao, L.X. Zhang, W.P. Cai, Y.Q. Li, Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode, Electrochem. Commun. 12 (2010) 540-543.[22] X.H. Cao, L.X. Zhang, W.P. Cai, Y.Q. Li, Amperometric sensing of dopamine using a single-walled carbon nanotube covalently attached to a conical glass micropore electrode, Electrochem. Commun. 12 (2010) 540-543.

    23. [23] L.X. Zhang, X.H. Cao, W.P. Cai, Y.Q. Li, Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels, J. Fluoresc. 5 (2011) 1865-1870.[23] L.X. Zhang, X.H. Cao, W.P. Cai, Y.Q. Li, Observations of the effect of confined space on fluorescence and diffusion properties of molecules in single conical nanopore channels, J. Fluoresc. 5 (2011) 1865-1870.

    24. [24] B. Zhang, Y.H. Zhang, H.S. White, Steady-state voltammetric response of the nanopore electrode, Anal. Chem. 2 (2006) 477-483.[24] B. Zhang, Y.H. Zhang, H.S. White, Steady-state voltammetric response of the nanopore electrode, Anal. Chem. 2 (2006) 477-483.

    25. [25] C. Wei, A.J. Bard, S.W. Feldberg, Current rectification at quartz nanopipette electrodes, Anal. Chem. 22 (1997) 4627-4633.[25] C. Wei, A.J. Bard, S.W. Feldberg, Current rectification at quartz nanopipette electrodes, Anal. Chem. 22 (1997) 4627-4633.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1116
  • HTML全文浏览量:  10
文章相关
  • 发布日期:  2014-08-15
  • 收稿日期:  2014-04-11
  • 网络出版日期:  2014-07-18
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章