Crystal structure and dielectric property of supramolecular macrocyclic [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4- assemblies

Fang-Fang Wang Cheng Chen Yi Zhang Da-Wei Fu

Citation:  Fang-Fang Wang, Cheng Chen, Yi Zhang, Da-Wei Fu. Crystal structure and dielectric property of supramolecular macrocyclic [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4- assemblies[J]. Chinese Chemical Letters, 2015, 26(1): 31-35. doi: 10.1016/j.cclet.2014.10.005 shu

Crystal structure and dielectric property of supramolecular macrocyclic [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4- assemblies

    通讯作者: Da-Wei Fu,
  • 基金项目:

    This work was financially supported by the 973 Project (No. 2014CB848800) (No. 2014CB848800)

    Ph.D. Programs Foundation of Ministry of Education of China (No. 20130092120013). (No. 20130092120013)

摘要: One novel organic-inorganic hybrid supramolecular assemblies [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4- (1), has been successfully constructed through the prominent strategies of crystal engineering (NDPA = N,N-dimethyl-1,4-phenylenediamine, DMA = dimethylamine), and characterized by IR, powder XRD and single crystal X-ray diffraction. In the structure, the supramolecular organic cations and inorganic ClO4- anions are arranged alternately and linked by N-O···H hydrogen bonds. It is worthy to note that the ClO4- are linked to form one-dimensional inorganic chain through strong N- H···O hydrogen bonds along b-axis. There is no distinct dielectric anomaly in the temperaturedependent and frequency-dependent dielectric constant curves, suggesting that no phase transition exists within the measured temperature range (120-420 K). The relative displacement of cations and anions, the turned polarization of molecular electric moment and macrocyclic molecule rotator are the main factors to determine the trend of dielectric constant.

English

  • 
    1. [1] D.W. Fu, H.L. Cai, W. Zhang, et al., Diisopropylammonium bromide is a hightemperature molecular ferroelectric crystal, Science 339 (2013) 425-428.[1] D.W. Fu, H.L. Cai, W. Zhang, et al., Diisopropylammonium bromide is a hightemperature molecular ferroelectric crystal, Science 339 (2013) 425-428.

    2. [2] D.W. Fu, H.L. Cai, S.H. Li, et al., 4-Methoxyanilinium perrhenate 18-crown-6: a new ferroelectric with order originating in swinglike motion slowing down, Phys. Rev. Lett. 110 (2013) 257601.[2] D.W. Fu, H.L. Cai, S.H. Li, et al., 4-Methoxyanilinium perrhenate 18-crown-6: a new ferroelectric with order originating in swinglike motion slowing down, Phys. Rev. Lett. 110 (2013) 257601.

    3. [3] W. Zhang, R.G. Xiong, Ferroelectric metal-organic frameworks, Chem. Rev. 112 (2012) 1163-1195.[3] W. Zhang, R.G. Xiong, Ferroelectric metal-organic frameworks, Chem. Rev. 112 (2012) 1163-1195.

    4. [4] Z.H. Sun, X.Q. Wang, J.H. Luo, et al., Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskitelike architectured supramolecular cocrystal, J. Mater. Chem. C 1 (2013) 2561-2567.[4] Z.H. Sun, X.Q. Wang, J.H. Luo, et al., Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskitelike architectured supramolecular cocrystal, J. Mater. Chem. C 1 (2013) 2561-2567.

    5. [5] H.N. Lee, H.M. Christen, M.F. Christen, C.M. Rouleau, D.H. Lowndes, Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, Nature 433 (2005) 395-399.[5] H.N. Lee, H.M. Christen, M.F. Christen, C.M. Rouleau, D.H. Lowndes, Strong polarization enhancement in asymmetric three-component ferroelectric superlattices, Nature 433 (2005) 395-399.

    6. [6] H.Y. Ye, D.W. Fu, Y. Zhang, et al., Hydrogen-bonded ferroelectrics based on metal-organic coordination, J. Am. Chem. Soc. 131 (2009) 42-43.[6] H.Y. Ye, D.W. Fu, Y. Zhang, et al., Hydrogen-bonded ferroelectrics based on metal-organic coordination, J. Am. Chem. Soc. 131 (2009) 42-43.

    7. [7] D.W. Fu, Y.M. Song, G.X. Wang, et al., Dielectric anisotropy of a homochiral trinuclear nickel(Ⅱ) complex, J. Am. Chem. Soc. 129 (2007) 5346-5347.[7] D.W. Fu, Y.M. Song, G.X. Wang, et al., Dielectric anisotropy of a homochiral trinuclear nickel(Ⅱ) complex, J. Am. Chem. Soc. 129 (2007) 5346-5347.

    8. [8] D.W. Fu, W. Zhang, Y. Zhang, et al., Supramolecular bola-like ferroelectric: 4- methoxyanilinium tetrafluoroborate-18-crown-6, J. Am. Chem. Soc. 133 (2011) 12780-12786.[8] D.W. Fu, W. Zhang, Y. Zhang, et al., Supramolecular bola-like ferroelectric: 4- methoxyanilinium tetrafluoroborate-18-crown-6, J. Am. Chem. Soc. 133 (2011) 12780-12786.

    9. [9] D.W. Fu, W. Zhang, H.L. Cai, et al., Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization, Adv. Mater. 23 (2011) 5658-5662.[9] D.W. Fu, W. Zhang, H.L. Cai, et al., Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization, Adv. Mater. 23 (2011) 5658-5662.

    10. [10] H. Hughes, M.M.B. Allix, C.A. Bridges, et al., A polar oxide with a large magnetization synthesized at ambient pressure, J. Am. Chem. Soc. 127 (2005) 13790-13791.[10] H. Hughes, M.M.B. Allix, C.A. Bridges, et al., A polar oxide with a large magnetization synthesized at ambient pressure, J. Am. Chem. Soc. 127 (2005) 13790-13791.

    11. [11] T. Akutagawa, H. Koshinaka, D. Stao, et al., Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators, Nat. Mater. 8 (2009) 342-347.[11] T. Akutagawa, H. Koshinaka, D. Stao, et al., Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators, Nat. Mater. 8 (2009) 342-347.

    12. [12] Y.E. Alexeev, B.I. Kharisov, T.C. Hermández García, A.D. Garnovskii, Coordination motifs in modern supramolecular chemistry, Coord. Chem. Rev. 254 (2010) 794- 831.[12] Y.E. Alexeev, B.I. Kharisov, T.C. Hermández García, A.D. Garnovskii, Coordination motifs in modern supramolecular chemistry, Coord. Chem. Rev. 254 (2010) 794- 831.

    13. [13] G.W. Gokel, W.M. Leevy, M.E. Weber, Crown ether: sensors for ions and molecular scaffolds for materials and biological models, Chem. Rev. 104 (2004) 2723-2750.[13] G.W. Gokel, W.M. Leevy, M.E. Weber, Crown ether: sensors for ions and molecular scaffolds for materials and biological models, Chem. Rev. 104 (2004) 2723-2750.

    14. [14] D.W. Fu, W. Zhang, R.G. Xiong, et al., A multiferroic perdeutero metal-organic framework, Angew. Chem. Int. Ed. 50 (2011) 11947-11951.[14] D.W. Fu, W. Zhang, R.G. Xiong, et al., A multiferroic perdeutero metal-organic framework, Angew. Chem. Int. Ed. 50 (2011) 11947-11951.

    15. [15] D.W. Fu, Y. Zhang, H.L. Cai, et al., The first example of a molecular-based ferroelectric with barium cation: catena-(mu(2)-nitrite-O,O)-bi-aqua-(18- crown-6)-barium nitrite, J. Mater. Chem. 22 (2012) 17525-17530.[15] D.W. Fu, Y. Zhang, H.L. Cai, et al., The first example of a molecular-based ferroelectric with barium cation: catena-(mu(2)-nitrite-O,O)-bi-aqua-(18- crown-6)-barium nitrite, J. Mater. Chem. 22 (2012) 17525-17530.

    16. [16] D. Braga, M. Gandolfi, M. Lusi, et al., Solution and solid-state preparation of 18- crown [6] complexes with M[HSO4] (n) salts (M = NH4+, K+, Sr2+ and n = 1,2) and an investigation of solvation/desolvation processes and crystal polymorphism, Chem. Eur. J. 13 (2007) 5249-5255.[16] D. Braga, M. Gandolfi, M. Lusi, et al., Solution and solid-state preparation of 18- crown [6] complexes with M[HSO4] (n) salts (M = NH4+, K+, Sr2+ and n = 1,2) and an investigation of solvation/desolvation processes and crystal polymorphism, Chem. Eur. J. 13 (2007) 5249-5255.

    17. [17] P.C. Junk, B.J. McCool, B. Moubaraki, et al., Utilization of crown ethers to stabilize the dinuclear μ-oxo bridged iron (Ⅲ) aqua ion, [(H2O)5Fe(mu-O) Fe(OH2)5]4+, J. Chem. Dalton Trans. 6 (2002) 1024-1029.[17] P.C. Junk, B.J. McCool, B. Moubaraki, et al., Utilization of crown ethers to stabilize the dinuclear μ-oxo bridged iron (Ⅲ) aqua ion, [(H2O)5Fe(mu-O) Fe(OH2)5]4+, J. Chem. Dalton Trans. 6 (2002) 1024-1029.

    18. [18] J.M. Harrington, S.B. Jones, P.H. White, R.D. Hancock, Possible role of relativistic effects in the plasticity of the coordination geometry of Cadmium (Ⅱ). A voltammetric study of the stability of the complexes of cadmium (Ⅱ) with 12-crown-4, 15-crown-5 and 18-crown-6 in aqueous solution and the structures of [Cd(benzo- 18-crown-6)(NCS)2] and [K(18-crown-6)][Cd(SCN)3], Inorg. Chem. 43 (2004) 4456-4463.[18] J.M. Harrington, S.B. Jones, P.H. White, R.D. Hancock, Possible role of relativistic effects in the plasticity of the coordination geometry of Cadmium (Ⅱ). A voltammetric study of the stability of the complexes of cadmium (Ⅱ) with 12-crown-4, 15-crown-5 and 18-crown-6 in aqueous solution and the structures of [Cd(benzo- 18-crown-6)(NCS)2] and [K(18-crown-6)][Cd(SCN)3], Inorg. Chem. 43 (2004) 4456-4463.

    19. [19] J.M. Dou, X. Gao, F.Y. Dong, D.C. Li, D.Q. Wang, One-or two dimensional 2,3- naphtho crown ether complexes [Na(N15C15)]2[M(SCN)4] and [K(N18C6)]2[M(SCN)4] (M = Pd, Pt) constructed by pi-pi stacking interactions, Dalton Trans. 18 (2004) 2918-2922.[19] J.M. Dou, X. Gao, F.Y. Dong, D.C. Li, D.Q. Wang, One-or two dimensional 2,3- naphtho crown ether complexes [Na(N15C15)]2[M(SCN)4] and [K(N18C6)]2[M(SCN)4] (M = Pd, Pt) constructed by pi-pi stacking interactions, Dalton Trans. 18 (2004) 2918-2922.

    20. [20] D. Braga, M. Gandolfi, M. Lusi, et al., Solution and solid-state preparation of 18- crown-6 and 15-crown-5 adducts of hydrogen sulfate salts and an investigation of the reversible dehydration processes, Cryst. Growth Des. 7 (2007) 919-924.[20] D. Braga, M. Gandolfi, M. Lusi, et al., Solution and solid-state preparation of 18- crown-6 and 15-crown-5 adducts of hydrogen sulfate salts and an investigation of the reversible dehydration processes, Cryst. Growth Des. 7 (2007) 919-924.

    21. [21] D. Braga, M. Curzi, M. Lusi, F. Grepioni, Unprecedented mechanochemical preparation of 18Crown[6] and 15Crown[5] adducts of ammonium hydrogen sulfate by grinding or kneading, CrystEngComm 7 (2005) 276-278.[21] D. Braga, M. Curzi, M. Lusi, F. Grepioni, Unprecedented mechanochemical preparation of 18Crown[6] and 15Crown[5] adducts of ammonium hydrogen sulfate by grinding or kneading, CrystEngComm 7 (2005) 276-278.

    22. [22] R.M. Izatt, J.C. Bradshaw, S.A. Nielsen, et al., Thermodynamic and kinetic data for cation macrocycle interaction, Chem. Rev. 85 (1985) 271-339.[22] R.M. Izatt, J.C. Bradshaw, S.A. Nielsen, et al., Thermodynamic and kinetic data for cation macrocycle interaction, Chem. Rev. 85 (1985) 271-339.

    23. [23] W.S. You, E.B. Wang, L. Xu, et al., Synthesis and structural characterization of a new supramolecular compound: H3PW12O40·6C14H20O5·16H2O (C14H20O5 = benzo-15-crown-5), J. Mol. Struct. 554 (2000) 141-147.[23] W.S. You, E.B. Wang, L. Xu, et al., Synthesis and structural characterization of a new supramolecular compound: H3PW12O40·6C14H20O5·16H2O (C14H20O5 = benzo-15-crown-5), J. Mol. Struct. 554 (2000) 141-147.

    24. [24] H.W. Gibson, N. Yamaguchi, L. Hamilton, J.W. Jones, Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecular and complementary monotopic host dendrons, J. Am. Chem. Soc. 124 (2002) 4653-4665.[24] H.W. Gibson, N. Yamaguchi, L. Hamilton, J.W. Jones, Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecular and complementary monotopic host dendrons, J. Am. Chem. Soc. 124 (2002) 4653-4665.

    25. [25] D. Braga, E. Modena, M. Polito, K. Rubini, F. Grepioni, Crystal forms of highly "dynamic" 18-crown[6] complexes with M[HSO4] and M[H2PO4] (M+= NH4+, Rb+, Cs+): thermal behaviour and solid-state preparation, New J. Chem. 32 (2008) 1718-1724.[25] D. Braga, E. Modena, M. Polito, K. Rubini, F. Grepioni, Crystal forms of highly "dynamic" 18-crown[6] complexes with M[HSO4] and M[H2PO4] (M+= NH4+, Rb+, Cs+): thermal behaviour and solid-state preparation, New J. Chem. 32 (2008) 1718-1724.

    26. [26] S.G. Li, J.H. Luo, Z.H. Sun, et al., Phase transition triggered by ordering of unique pendulum-like motions in a supramolecular complex: potassium hydrogen bis(- dichloroacetate)-18-crown-6, Cryst. Growth Des. 13 (2013) 2675-2679.[26] S.G. Li, J.H. Luo, Z.H. Sun, et al., Phase transition triggered by ordering of unique pendulum-like motions in a supramolecular complex: potassium hydrogen bis(- dichloroacetate)-18-crown-6, Cryst. Growth Des. 13 (2013) 2675-2679.

    27. [27] P. Czarnecki, A. Katrusiak, I. Szafraniak, J. Wasicki, Experimental evidence for a continuous phase transition in a multidimensional ferroelectric, Phys. Rev. B 57 (1998) 3326-3332.[27] P. Czarnecki, A. Katrusiak, I. Szafraniak, J. Wasicki, Experimental evidence for a continuous phase transition in a multidimensional ferroelectric, Phys. Rev. B 57 (1998) 3326-3332.

    28. [28] N. Onoda Yamamuro, O. Yamamuro, T. Matsuo, H. Suga, Heat capacities and phase transition of protonated and deuterated methylammonium tetrafluoroborates, J. Phys. Chem. 100 (1996) 19647-19652.[28] N. Onoda Yamamuro, O. Yamamuro, T. Matsuo, H. Suga, Heat capacities and phase transition of protonated and deuterated methylammonium tetrafluoroborates, J. Phys. Chem. 100 (1996) 19647-19652.

    29. [29] E. Palacios, J.J. Melero, R. Burriel, P. Ferloni, Structual, calorimetric, and Monte Carlo investigation of the order-disorder transition of BF4 in (CH3)4NBF4, Phys. Rev. B 54 (1996) 9099-9108.[29] E. Palacios, J.J. Melero, R. Burriel, P. Ferloni, Structual, calorimetric, and Monte Carlo investigation of the order-disorder transition of BF4 in (CH3)4NBF4, Phys. Rev. B 54 (1996) 9099-9108.

    30. [30] T. Akutagawa, D. Endo, F. Kudo, et al., A solid-state supramolecular rotator assenbled from a Cs-crown ether polyoxometalate hybrid: (Cs+)3([18]crown- 6)3(H+)2[PMo12O40], Cryst. Growth Des. 8 (2008) 812-816.[30] T. Akutagawa, D. Endo, F. Kudo, et al., A solid-state supramolecular rotator assenbled from a Cs-crown ether polyoxometalate hybrid: (Cs+)3([18]crown- 6)3(H+)2[PMo12O40], Cryst. Growth Des. 8 (2008) 812-816.

    31. [31] D.H. Wu, J.Z. Ge, H.L. Cai, W. Zhang, R.G. Xiong, Organic salt of hydrogen L-tartaric acid: a novel wide-temperature-range ferroelectrics with a reversible phase transition, CrystEngComm 13 (2011) 319-324.[31] D.H. Wu, J.Z. Ge, H.L. Cai, W. Zhang, R.G. Xiong, Organic salt of hydrogen L-tartaric acid: a novel wide-temperature-range ferroelectrics with a reversible phase transition, CrystEngComm 13 (2011) 319-324.

    32. [32] SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.[32] SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

    33. [33] G.M. Sheldrick, SADABSs: An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.[33] G.M. Sheldrick, SADABSs: An Empirical Absorption Correction Program, Bruker Analytical X-ray Systems, Madison, WI, 1996.

    34. [34] G.M. Sheldrick, SHELXTL-97, Universität of Göttingen, Göttingen, Germany, 1997.[34] G.M. Sheldrick, SHELXTL-97, Universität of Göttingen, Göttingen, Germany, 1997.

    35. [35] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Wiley, New York, 1978.[35] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 3rd ed., Wiley, New York, 1978.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1198
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2014-10-08
  • 收稿日期:  2014-08-25
  • 网络出版日期:  2014-09-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章