4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions
English
4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions
-
-
-
[1] E. De Clercq, Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection, II Farmaco 54 (1999) 26-45.[1] E. De Clercq, Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection, II Farmaco 54 (1999) 26-45.
-
[2] R.L.T. Parreira, O. Abrahão, S.E. Galembeck, Conformational preferences of nonnucleoside HIV-1 reverse transcriptase inhibitors, Tetrahedron 57 (2001) 3243- 3253.[2] R.L.T. Parreira, O. Abrahão, S.E. Galembeck, Conformational preferences of nonnucleoside HIV-1 reverse transcriptase inhibitors, Tetrahedron 57 (2001) 3243- 3253.
-
[3] E.L. Presti, R. Boggia, A. Feltrin, et al., 3-Acetyl-5-acylpyridin-2(1H)-ones and 3- acetyl-7,8-dihydro-2,5(1H,6H) quinolinediones: synthesis, cardiotonic activity and computational studies, II Farmaco 54 (1999) 465-474.[3] E.L. Presti, R. Boggia, A. Feltrin, et al., 3-Acetyl-5-acylpyridin-2(1H)-ones and 3- acetyl-7,8-dihydro-2,5(1H,6H) quinolinediones: synthesis, cardiotonic activity and computational studies, II Farmaco 54 (1999) 465-474.
-
[4] W.K. Anderson, D.C. Dean, T. Endo, Synthesis, chemistry, and antineoplastic activity of a-halopyridinium salts: potential pyridone prodrugs of acylated vinylogous carbinolamine tumor inhibitors, J. Med. Chem. 33 (1990) 1667-1675.[4] W.K. Anderson, D.C. Dean, T. Endo, Synthesis, chemistry, and antineoplastic activity of a-halopyridinium salts: potential pyridone prodrugs of acylated vinylogous carbinolamine tumor inhibitors, J. Med. Chem. 33 (1990) 1667-1675.
-
[5] D. Rajguru, B.S. Keshwal, S. Jain, Solvent-free, green and efficient synthesis of pyrano[4,3-b]pyrans by grinding and their biological evaluation as antitumor and antioxidant agents, Med. Chem. Res. 22 (2013) 5934-5939.[5] D. Rajguru, B.S. Keshwal, S. Jain, Solvent-free, green and efficient synthesis of pyrano[4,3-b]pyrans by grinding and their biological evaluation as antitumor and antioxidant agents, Med. Chem. Res. 22 (2013) 5934-5939.
-
[6] P.S. Dragovich, T.J. Prins, R. Zhou, et al., Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics, J. Med. Chem. 45 (2002) 1607-1623.[6] P.S. Dragovich, T.J. Prins, R. Zhou, et al., Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics, J. Med. Chem. 45 (2002) 1607-1623.
-
[7] W. Kemnitzer, J. Drewe, S.C. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8- positions, J. Med. Chem. 50 (2007) 2858-2864.[7] W. Kemnitzer, J. Drewe, S.C. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8- positions, J. Med. Chem. 50 (2007) 2858-2864.
-
[8] X. Fan, D. Feng, Y. Qu, et al., Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents, Bioorg. Med. Chem. Lett. 20 (2010) 809- 813.[8] X. Fan, D. Feng, Y. Qu, et al., Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents, Bioorg. Med. Chem. Lett. 20 (2010) 809- 813.
-
[9] K. Tatsuta, T. Yamaguchi, Y. Tsuda, et al., The first total synthesis and structural determination of YCM1008A, Tetrahedron Lett. 48 (2007) 4187- 4190.[9] K. Tatsuta, T. Yamaguchi, Y. Tsuda, et al., The first total synthesis and structural determination of YCM1008A, Tetrahedron Lett. 48 (2007) 4187- 4190.
-
[10] K. Tanabe, W.F. Hölderich, Industrial application of solid acid-base catalysts, Appl. Catal. A 181 (1999) 399-434.[10] K. Tanabe, W.F. Hölderich, Industrial application of solid acid-base catalysts, Appl. Catal. A 181 (1999) 399-434.
-
[11] D.J. Cole-Hamilton, Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling, Science 299 (2003) 1702-1706.[11] D.J. Cole-Hamilton, Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling, Science 299 (2003) 1702-1706.
-
[12] A. Chakrabarti, M.M. Sharma, Cationic ion exchange resins as catalyst, React. Polym. 20 (1993) 1-45.[12] A. Chakrabarti, M.M. Sharma, Cationic ion exchange resins as catalyst, React. Polym. 20 (1993) 1-45.
-
[13] J.M. Riego, Z. Sedin, J.M. Zaldivar, N.C. Marziano, C. Tortato, Sulfuric acid on silicagel: an inexpensive catalyst for aromatic nitration, Tetrahedron Lett. 37 (1996) 513-516.[13] J.M. Riego, Z. Sedin, J.M. Zaldivar, N.C. Marziano, C. Tortato, Sulfuric acid on silicagel: an inexpensive catalyst for aromatic nitration, Tetrahedron Lett. 37 (1996) 513-516.
-
[14] N.J. Turro, Photochemistry of ketones adsorbed on porous silica, Tetrahedron 43 (1987) 1589-1616.[14] N.J. Turro, Photochemistry of ketones adsorbed on porous silica, Tetrahedron 43 (1987) 1589-1616.
-
[15] N.G. Khaligh, P.G. Ghasem-Abadi, N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solventpfree conditions, Chin. J. Catal. 35 (2014) 1126-1135.[15] N.G. Khaligh, P.G. Ghasem-Abadi, N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solventpfree conditions, Chin. J. Catal. 35 (2014) 1126-1135.
-
[16] B.X. Du, M.Y. Yin, M.M. Zhang, Y.L. Li, X.S. Wang, Yb(OTf)3: an efficient catalyst for the synthesis of 11-aryl-7H-cyclopenta[b][4,7]phenanthrolin-10(11H)-one derivatives, J. Heterocycl. Chem. 49 (2012) 1439-1442.[16] B.X. Du, M.Y. Yin, M.M. Zhang, Y.L. Li, X.S. Wang, Yb(OTf)3: an efficient catalyst for the synthesis of 11-aryl-7H-cyclopenta[b][4,7]phenanthrolin-10(11H)-one derivatives, J. Heterocycl. Chem. 49 (2012) 1439-1442.
-
[17] A.D. Patil, A.J. Freyer, S.E. Drake, et al., The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn., J. Med. Chem. 36 (1993) 4131-4138.[17] A.D. Patil, A.J. Freyer, S.E. Drake, et al., The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn., J. Med. Chem. 36 (1993) 4131-4138.
-
[18] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998.[18] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998.
-
[19] D. Warren, Green Chemistry. A Teaching Resource, Royal Society of Chemistry, Cambridge, 2001.[19] D. Warren, Green Chemistry. A Teaching Resource, Royal Society of Chemistry, Cambridge, 2001.
-
[20] J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology, Blackwell Publishing, Abingdon, Oxfordshire, 2002.[20] J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology, Blackwell Publishing, Abingdon, Oxfordshire, 2002.
-
[21] M. Poliakoff, P. Licence, Sustainable technology: green chemistry, Nature 450 (2007) 810-812.[21] M. Poliakoff, P. Licence, Sustainable technology: green chemistry, Nature 450 (2007) 810-812.
-
[22] P. Tundo, P.T. Anastas (Eds.), Green Chemistry: Challenging Perspectives, Oxford University Press, Oxford, UK, 2000.[22] P. Tundo, P.T. Anastas (Eds.), Green Chemistry: Challenging Perspectives, Oxford University Press, Oxford, UK, 2000.
-
[23] R.A. Sheldon, I. Arends, Green Chemistry and Catalysis, Wiley-VCH, Indianapolis, USA, 2006.[23] R.A. Sheldon, I. Arends, Green Chemistry and Catalysis, Wiley-VCH, Indianapolis, USA, 2006.
-
[24] (a) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: a mild, efficient, and reusable catalyst for the chemoselective trimethylsilylation of alcohols and phenols, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 2156-2165;[24] (a) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: a mild, efficient, and reusable catalyst for the chemoselective trimethylsilylation of alcohols and phenols, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 2156-2165;
-
[25]
(b) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions, Dyes Pigm. 95 (2012) 789-794;(b) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions, Dyes Pigm. 95 (2012) 789-794;
-
[26]
(c) F. Shirini, N.G. Khaligh, A succinimide-N-sulfonic acid catalyst for the acetylation reactions in absence of a solvent, Chin. J. Catal. 34 (2013) 695-703;(c) F. Shirini, N.G. Khaligh, A succinimide-N-sulfonic acid catalyst for the acetylation reactions in absence of a solvent, Chin. J. Catal. 34 (2013) 695-703;
-
[27]
(d) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid catalyzed synthesis of bis(indolyl)methane and coumarin derivatives under mild conditions, Chin. J. Catal. 34 (2013) 1890-1896.(d) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid catalyzed synthesis of bis(indolyl)methane and coumarin derivatives under mild conditions, Chin. J. Catal. 34 (2013) 1890-1896.
-
[25] T.S. Jin, G. Sun, Y.W. Li, T.S. Li, An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H, Green Chem. 4 (2002) 255-256.[25] T.S. Jin, G. Sun, Y.W. Li, T.S. Li, An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H, Green Chem. 4 (2002) 255-256.
-
[26] M.Z. Piao, K. Imafuku, Convenient synthesis of amino-substituted pyranopyranones, Tetrahedron Lett. 38 (1997) 5301-5302.[26] M.Z. Piao, K. Imafuku, Convenient synthesis of amino-substituted pyranopyranones, Tetrahedron Lett. 38 (1997) 5301-5302.
-
[27] I.V. Magedov, M. Manpadi, M.A. Ogasawara, et al., Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones, J. Med. Chem. 51 (2008) 2561-2570.[27] I.V. Magedov, M. Manpadi, M.A. Ogasawara, et al., Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones, J. Med. Chem. 51 (2008) 2561-2570.
-
[28] E.V. Stoyanov, I.C. Ivanov, D. Heber, General method for the preparation of substituted 2-amino-4H,5H-pyrano[4,3-b]pyran-5-ones and 2-amino-4H-pyrano[ 3,2-c]pyridine-5-ones, Molecules 5 (2000) 19-23.[28] E.V. Stoyanov, I.C. Ivanov, D. Heber, General method for the preparation of substituted 2-amino-4H,5H-pyrano[4,3-b]pyran-5-ones and 2-amino-4H-pyrano[ 3,2-c]pyridine-5-ones, Molecules 5 (2000) 19-23.
-
[29] D.Q. Shi, L.H. Niu, Q.Y. Zhuhang, Synthesis of pyrano[3,2-c]pyran-5-one derivatives by three-component one-pot reaction in aqueous media, Chin. J. Org. Chem. 28 (2008) 1633-1636.[29] D.Q. Shi, L.H. Niu, Q.Y. Zhuhang, Synthesis of pyrano[3,2-c]pyran-5-one derivatives by three-component one-pot reaction in aqueous media, Chin. J. Org. Chem. 28 (2008) 1633-1636.
-
[30] A. Shaabani, S. Samadi, Z. Badri, A. Rahmati, Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems, Catal. Lett. 104 (2005) 39-43.[30] A. Shaabani, S. Samadi, Z. Badri, A. Rahmati, Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems, Catal. Lett. 104 (2005) 39-43.
-
[31] A. Shaabani, S. Samadi, A. Rahmati, One-pot, three-component condensation reaction in water: an efficient and improved procedure for the synthesis of pyran annulated heterocyclic systems, Synth. Commun. 37 (2007) 491-499.[31] A. Shaabani, S. Samadi, A. Rahmati, One-pot, three-component condensation reaction in water: an efficient and improved procedure for the synthesis of pyran annulated heterocyclic systems, Synth. Commun. 37 (2007) 491-499.
-
[32] X.S. Wang, J.X. Zhou, Z.S. Zeng, et al., One-pot synthesis of pyrano[3,2-c]pyran derivatives catalyzed by KF/Al2O3, Arkivoc 11 (2006) 107-113.[32] X.S. Wang, J.X. Zhou, Z.S. Zeng, et al., One-pot synthesis of pyrano[3,2-c]pyran derivatives catalyzed by KF/Al2O3, Arkivoc 11 (2006) 107-113.
-
[33] M. Seifi,H. Sheibani, High surface areaMgOas a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media, Catal. Lett. 126 (2008) 275-279.[33] M. Seifi,H. Sheibani, High surface areaMgOas a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media, Catal. Lett. 126 (2008) 275-279.
-
[34] D. Rajguru, B.S. Keshwal, S. Jain, H6P2W18O62 18H2O: a green and reusable catalyst for one-pot synthesis of pyrano[4,3-b]pyrans in water, Chin. Chem. Lett. 24 (2013) 1033-1036.[34] D. Rajguru, B.S. Keshwal, S. Jain, H6P2W18O62 18H2O: a green and reusable catalyst for one-pot synthesis of pyrano[4,3-b]pyrans in water, Chin. Chem. Lett. 24 (2013) 1033-1036.
-
[35] N.G. Khaligh, 1,10-Butylenebis(3-methyl-3H-imidazol-1-ium) hydrogensulfate as a halogen-free and reusable binuclear Brönsted ionic liquid catalyzed the synthesis of pyrano[4,3-b]pyran derivatives, Monatsh. Chem. 145 (2014) 1643-1648.[35] N.G. Khaligh, 1,10-Butylenebis(3-methyl-3H-imidazol-1-ium) hydrogensulfate as a halogen-free and reusable binuclear Brönsted ionic liquid catalyzed the synthesis of pyrano[4,3-b]pyran derivatives, Monatsh. Chem. 145 (2014) 1643-1648.
-
[36] M. Ghashang, S.S. Mansoor, K. Aswin, Thiourea dioxide: an efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4,3-b]pyran derivatives in water, Chin. J. Catal. 35 (2014) 127-133.[36] M. Ghashang, S.S. Mansoor, K. Aswin, Thiourea dioxide: an efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4,3-b]pyran derivatives in water, Chin. J. Catal. 35 (2014) 127-133.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1221
- HTML全文浏览量: 8

下载: