4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions

Nader Ghaffari Khaligh

Citation:  Nader Ghaffari Khaligh. 4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions[J]. Chinese Chemical Letters, 2015, 26(1): 26-30. doi: 10.1016/j.cclet.2014.10.009 shu

4-(Succinimido)-1-butane sulfonic acid as a Brönsted acid catalyst for synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions

    通讯作者: Nader Ghaffari Khaligh,
摘要: 4-(Succinimido)-1-butane sulfonic acid as an efficient and reusable Brönsted acid catalyzed the synthesis of pyrano[4,3-b]pyran derivatives under solvent-free conditions. The catalyst can be prepared by mixing succinimide and 1,4-butanesultone that is more simple and safer than the preparation of succinimide sulfonic acid. This method has the advantages of high yield, clean reaction, simple methodology and short reaction time. The catalyst could be recycled without significant loss of activity.

English

  • 
    1. [1] E. De Clercq, Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection, II Farmaco 54 (1999) 26-45.[1] E. De Clercq, Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection, II Farmaco 54 (1999) 26-45.

    2. [2] R.L.T. Parreira, O. Abrahão, S.E. Galembeck, Conformational preferences of nonnucleoside HIV-1 reverse transcriptase inhibitors, Tetrahedron 57 (2001) 3243- 3253.[2] R.L.T. Parreira, O. Abrahão, S.E. Galembeck, Conformational preferences of nonnucleoside HIV-1 reverse transcriptase inhibitors, Tetrahedron 57 (2001) 3243- 3253.

    3. [3] E.L. Presti, R. Boggia, A. Feltrin, et al., 3-Acetyl-5-acylpyridin-2(1H)-ones and 3- acetyl-7,8-dihydro-2,5(1H,6H) quinolinediones: synthesis, cardiotonic activity and computational studies, II Farmaco 54 (1999) 465-474.[3] E.L. Presti, R. Boggia, A. Feltrin, et al., 3-Acetyl-5-acylpyridin-2(1H)-ones and 3- acetyl-7,8-dihydro-2,5(1H,6H) quinolinediones: synthesis, cardiotonic activity and computational studies, II Farmaco 54 (1999) 465-474.

    4. [4] W.K. Anderson, D.C. Dean, T. Endo, Synthesis, chemistry, and antineoplastic activity of a-halopyridinium salts: potential pyridone prodrugs of acylated vinylogous carbinolamine tumor inhibitors, J. Med. Chem. 33 (1990) 1667-1675.[4] W.K. Anderson, D.C. Dean, T. Endo, Synthesis, chemistry, and antineoplastic activity of a-halopyridinium salts: potential pyridone prodrugs of acylated vinylogous carbinolamine tumor inhibitors, J. Med. Chem. 33 (1990) 1667-1675.

    5. [5] D. Rajguru, B.S. Keshwal, S. Jain, Solvent-free, green and efficient synthesis of pyrano[4,3-b]pyrans by grinding and their biological evaluation as antitumor and antioxidant agents, Med. Chem. Res. 22 (2013) 5934-5939.[5] D. Rajguru, B.S. Keshwal, S. Jain, Solvent-free, green and efficient synthesis of pyrano[4,3-b]pyrans by grinding and their biological evaluation as antitumor and antioxidant agents, Med. Chem. Res. 22 (2013) 5934-5939.

    6. [6] P.S. Dragovich, T.J. Prins, R. Zhou, et al., Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics, J. Med. Chem. 45 (2002) 1607-1623.[6] P.S. Dragovich, T.J. Prins, R. Zhou, et al., Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics, J. Med. Chem. 45 (2002) 1607-1623.

    7. [7] W. Kemnitzer, J. Drewe, S.C. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8- positions, J. Med. Chem. 50 (2007) 2858-2864.[7] W. Kemnitzer, J. Drewe, S.C. Jiang, et al., Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 3. Structure-activity relationships of fused rings at the 7,8- positions, J. Med. Chem. 50 (2007) 2858-2864.

    8. [8] X. Fan, D. Feng, Y. Qu, et al., Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents, Bioorg. Med. Chem. Lett. 20 (2010) 809- 813.[8] X. Fan, D. Feng, Y. Qu, et al., Practical and efficient synthesis of pyrano[3,2-c]pyridone, pyrano[4,3-b]pyran and their hybrids with nucleoside as potential antiviral and antileishmanial agents, Bioorg. Med. Chem. Lett. 20 (2010) 809- 813.

    9. [9] K. Tatsuta, T. Yamaguchi, Y. Tsuda, et al., The first total synthesis and structural determination of YCM1008A, Tetrahedron Lett. 48 (2007) 4187- 4190.[9] K. Tatsuta, T. Yamaguchi, Y. Tsuda, et al., The first total synthesis and structural determination of YCM1008A, Tetrahedron Lett. 48 (2007) 4187- 4190.

    10. [10] K. Tanabe, W.F. Hölderich, Industrial application of solid acid-base catalysts, Appl. Catal. A 181 (1999) 399-434.[10] K. Tanabe, W.F. Hölderich, Industrial application of solid acid-base catalysts, Appl. Catal. A 181 (1999) 399-434.

    11. [11] D.J. Cole-Hamilton, Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling, Science 299 (2003) 1702-1706.[11] D.J. Cole-Hamilton, Homogeneous catalysis - new approaches to catalyst separation, recovery, and recycling, Science 299 (2003) 1702-1706.

    12. [12] A. Chakrabarti, M.M. Sharma, Cationic ion exchange resins as catalyst, React. Polym. 20 (1993) 1-45.[12] A. Chakrabarti, M.M. Sharma, Cationic ion exchange resins as catalyst, React. Polym. 20 (1993) 1-45.

    13. [13] J.M. Riego, Z. Sedin, J.M. Zaldivar, N.C. Marziano, C. Tortato, Sulfuric acid on silicagel: an inexpensive catalyst for aromatic nitration, Tetrahedron Lett. 37 (1996) 513-516.[13] J.M. Riego, Z. Sedin, J.M. Zaldivar, N.C. Marziano, C. Tortato, Sulfuric acid on silicagel: an inexpensive catalyst for aromatic nitration, Tetrahedron Lett. 37 (1996) 513-516.

    14. [14] N.J. Turro, Photochemistry of ketones adsorbed on porous silica, Tetrahedron 43 (1987) 1589-1616.[14] N.J. Turro, Photochemistry of ketones adsorbed on porous silica, Tetrahedron 43 (1987) 1589-1616.

    15. [15] N.G. Khaligh, P.G. Ghasem-Abadi, N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solventpfree conditions, Chin. J. Catal. 35 (2014) 1126-1135.[15] N.G. Khaligh, P.G. Ghasem-Abadi, N-Sulfonic acid poly(4-vinylpyridinum) hydrogen sulfate as a novel, efficient, and reusable solid acid catalyst for acylation under solventpfree conditions, Chin. J. Catal. 35 (2014) 1126-1135.

    16. [16] B.X. Du, M.Y. Yin, M.M. Zhang, Y.L. Li, X.S. Wang, Yb(OTf)3: an efficient catalyst for the synthesis of 11-aryl-7H-cyclopenta[b][4,7]phenanthrolin-10(11H)-one derivatives, J. Heterocycl. Chem. 49 (2012) 1439-1442.[16] B.X. Du, M.Y. Yin, M.M. Zhang, Y.L. Li, X.S. Wang, Yb(OTf)3: an efficient catalyst for the synthesis of 11-aryl-7H-cyclopenta[b][4,7]phenanthrolin-10(11H)-one derivatives, J. Heterocycl. Chem. 49 (2012) 1439-1442.

    17. [17] A.D. Patil, A.J. Freyer, S.E. Drake, et al., The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn., J. Med. Chem. 36 (1993) 4131-4138.[17] A.D. Patil, A.J. Freyer, S.E. Drake, et al., The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn., J. Med. Chem. 36 (1993) 4131-4138.

    18. [18] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998.[18] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, Oxford, 1998.

    19. [19] D. Warren, Green Chemistry. A Teaching Resource, Royal Society of Chemistry, Cambridge, 2001.[19] D. Warren, Green Chemistry. A Teaching Resource, Royal Society of Chemistry, Cambridge, 2001.

    20. [20] J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology, Blackwell Publishing, Abingdon, Oxfordshire, 2002.[20] J. Clark, D. Macquarrie, Handbook of Green Chemistry and Technology, Blackwell Publishing, Abingdon, Oxfordshire, 2002.

    21. [21] M. Poliakoff, P. Licence, Sustainable technology: green chemistry, Nature 450 (2007) 810-812.[21] M. Poliakoff, P. Licence, Sustainable technology: green chemistry, Nature 450 (2007) 810-812.

    22. [22] P. Tundo, P.T. Anastas (Eds.), Green Chemistry: Challenging Perspectives, Oxford University Press, Oxford, UK, 2000.[22] P. Tundo, P.T. Anastas (Eds.), Green Chemistry: Challenging Perspectives, Oxford University Press, Oxford, UK, 2000.

    23. [23] R.A. Sheldon, I. Arends, Green Chemistry and Catalysis, Wiley-VCH, Indianapolis, USA, 2006.[23] R.A. Sheldon, I. Arends, Green Chemistry and Catalysis, Wiley-VCH, Indianapolis, USA, 2006.

    24. [24] (a) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: a mild, efficient, and reusable catalyst for the chemoselective trimethylsilylation of alcohols and phenols, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 2156-2165;[24] (a) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: a mild, efficient, and reusable catalyst for the chemoselective trimethylsilylation of alcohols and phenols, Phosphorus Sulfur Silicon Relat. Elem. 186 (2011) 2156-2165;

    25. [25]

      (b) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions, Dyes Pigm. 95 (2012) 789-794;(b) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid: an efficient catalyst for the synthesis of xanthene derivatives under solvent-free conditions, Dyes Pigm. 95 (2012) 789-794;

    26. [26]

      (c) F. Shirini, N.G. Khaligh, A succinimide-N-sulfonic acid catalyst for the acetylation reactions in absence of a solvent, Chin. J. Catal. 34 (2013) 695-703;(c) F. Shirini, N.G. Khaligh, A succinimide-N-sulfonic acid catalyst for the acetylation reactions in absence of a solvent, Chin. J. Catal. 34 (2013) 695-703;

    27. [27]

      (d) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid catalyzed synthesis of bis(indolyl)methane and coumarin derivatives under mild conditions, Chin. J. Catal. 34 (2013) 1890-1896.(d) F. Shirini, N.G. Khaligh, Succinimide-N-sulfonic acid catalyzed synthesis of bis(indolyl)methane and coumarin derivatives under mild conditions, Chin. J. Catal. 34 (2013) 1890-1896.

    28. [25] T.S. Jin, G. Sun, Y.W. Li, T.S. Li, An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H, Green Chem. 4 (2002) 255-256.[25] T.S. Jin, G. Sun, Y.W. Li, T.S. Li, An efficient and convenient procedure for the preparation of 1,1-diacetates from aldehydes catalyzed by H2NSO3H, Green Chem. 4 (2002) 255-256.

    29. [26] M.Z. Piao, K. Imafuku, Convenient synthesis of amino-substituted pyranopyranones, Tetrahedron Lett. 38 (1997) 5301-5302.[26] M.Z. Piao, K. Imafuku, Convenient synthesis of amino-substituted pyranopyranones, Tetrahedron Lett. 38 (1997) 5301-5302.

    30. [27] I.V. Magedov, M. Manpadi, M.A. Ogasawara, et al., Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones, J. Med. Chem. 51 (2008) 2561-2570.[27] I.V. Magedov, M. Manpadi, M.A. Ogasawara, et al., Structural simplification of bioactive natural products with multicomponent synthesis. 2. Antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones, J. Med. Chem. 51 (2008) 2561-2570.

    31. [28] E.V. Stoyanov, I.C. Ivanov, D. Heber, General method for the preparation of substituted 2-amino-4H,5H-pyrano[4,3-b]pyran-5-ones and 2-amino-4H-pyrano[ 3,2-c]pyridine-5-ones, Molecules 5 (2000) 19-23.[28] E.V. Stoyanov, I.C. Ivanov, D. Heber, General method for the preparation of substituted 2-amino-4H,5H-pyrano[4,3-b]pyran-5-ones and 2-amino-4H-pyrano[ 3,2-c]pyridine-5-ones, Molecules 5 (2000) 19-23.

    32. [29] D.Q. Shi, L.H. Niu, Q.Y. Zhuhang, Synthesis of pyrano[3,2-c]pyran-5-one derivatives by three-component one-pot reaction in aqueous media, Chin. J. Org. Chem. 28 (2008) 1633-1636.[29] D.Q. Shi, L.H. Niu, Q.Y. Zhuhang, Synthesis of pyrano[3,2-c]pyran-5-one derivatives by three-component one-pot reaction in aqueous media, Chin. J. Org. Chem. 28 (2008) 1633-1636.

    33. [30] A. Shaabani, S. Samadi, Z. Badri, A. Rahmati, Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems, Catal. Lett. 104 (2005) 39-43.[30] A. Shaabani, S. Samadi, Z. Badri, A. Rahmati, Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems, Catal. Lett. 104 (2005) 39-43.

    34. [31] A. Shaabani, S. Samadi, A. Rahmati, One-pot, three-component condensation reaction in water: an efficient and improved procedure for the synthesis of pyran annulated heterocyclic systems, Synth. Commun. 37 (2007) 491-499.[31] A. Shaabani, S. Samadi, A. Rahmati, One-pot, three-component condensation reaction in water: an efficient and improved procedure for the synthesis of pyran annulated heterocyclic systems, Synth. Commun. 37 (2007) 491-499.

    35. [32] X.S. Wang, J.X. Zhou, Z.S. Zeng, et al., One-pot synthesis of pyrano[3,2-c]pyran derivatives catalyzed by KF/Al2O3, Arkivoc 11 (2006) 107-113.[32] X.S. Wang, J.X. Zhou, Z.S. Zeng, et al., One-pot synthesis of pyrano[3,2-c]pyran derivatives catalyzed by KF/Al2O3, Arkivoc 11 (2006) 107-113.

    36. [33] M. Seifi,H. Sheibani, High surface areaMgOas a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media, Catal. Lett. 126 (2008) 275-279.[33] M. Seifi,H. Sheibani, High surface areaMgOas a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media, Catal. Lett. 126 (2008) 275-279.

    37. [34] D. Rajguru, B.S. Keshwal, S. Jain, H6P2W18O62 18H2O: a green and reusable catalyst for one-pot synthesis of pyrano[4,3-b]pyrans in water, Chin. Chem. Lett. 24 (2013) 1033-1036.[34] D. Rajguru, B.S. Keshwal, S. Jain, H6P2W18O62 18H2O: a green and reusable catalyst for one-pot synthesis of pyrano[4,3-b]pyrans in water, Chin. Chem. Lett. 24 (2013) 1033-1036.

    38. [35] N.G. Khaligh, 1,10-Butylenebis(3-methyl-3H-imidazol-1-ium) hydrogensulfate as a halogen-free and reusable binuclear Brönsted ionic liquid catalyzed the synthesis of pyrano[4,3-b]pyran derivatives, Monatsh. Chem. 145 (2014) 1643-1648.[35] N.G. Khaligh, 1,10-Butylenebis(3-methyl-3H-imidazol-1-ium) hydrogensulfate as a halogen-free and reusable binuclear Brönsted ionic liquid catalyzed the synthesis of pyrano[4,3-b]pyran derivatives, Monatsh. Chem. 145 (2014) 1643-1648.

    39. [36] M. Ghashang, S.S. Mansoor, K. Aswin, Thiourea dioxide: an efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4,3-b]pyran derivatives in water, Chin. J. Catal. 35 (2014) 127-133.[36] M. Ghashang, S.S. Mansoor, K. Aswin, Thiourea dioxide: an efficient and reusable organocatalyst for the rapid one-pot synthesis of pyrano[4,3-b]pyran derivatives in water, Chin. J. Catal. 35 (2014) 127-133.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1221
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2014-10-13
  • 收稿日期:  2014-07-08
  • 网络出版日期:  2014-09-12
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章