Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication
English
Controlled fabrication of hierarchically microstructured surfaces via surface wrinkling combined with template replication
-
Key words:
- Surface wrinkling
- / Template replication
- / Stress relief
- / Hierarchical structures
-
-
[1] L. Feng, S.H. Li, Y.S. Li, et al., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater. 4 (2002) 1857-1860.[1] L. Feng, S.H. Li, Y.S. Li, et al., Super-hydrophobic surfaces: from natural to artificial, Adv. Mater. 4 (2002) 1857-1860.
-
[2] R. Blossey, Self-cleaning surfaces—virtual realities, Nat. Mater. 2 (2003) 301-306.[2] R. Blossey, Self-cleaning surfaces—virtual realities, Nat. Mater. 2 (2003) 301-306.
-
[3] S.Z. Wu, D. Wu, J. Yao, et al., One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting, Langmuir 26 (2010) 12012- 12016.[3] S.Z. Wu, D. Wu, J. Yao, et al., One-step preparation of regular micropearl arrays for two-direction controllable anisotropic wetting, Langmuir 26 (2010) 12012- 12016.
-
[4] G.S. Watson, J.A. Watson, Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy, Appl. Surf. Sci. 235 (2004) 139-144.[4] G.S. Watson, J.A. Watson, Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy, Appl. Surf. Sci. 235 (2004) 139-144.
-
[5] K.H. Smith, E. Tejeda-Montes, M. Poch, Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials, Chem. Soc. Rev. 40 (2011) 4563-4577.[5] K.H. Smith, E. Tejeda-Montes, M. Poch, Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials, Chem. Soc. Rev. 40 (2011) 4563-4577.
-
[6] C.M. Gabardo, Y. Zhu, L. Soleymani, J.M. Moran-Mirabal, Bench-top fabrication of hierarchically structured high-surface-area electrodes, Adv. Funct. Mater. 23 (2013) 3030-3039.[6] C.M. Gabardo, Y. Zhu, L. Soleymani, J.M. Moran-Mirabal, Bench-top fabrication of hierarchically structured high-surface-area electrodes, Adv. Funct. Mater. 23 (2013) 3030-3039.
-
[7] Y. Xia, J.J. McClelland, R. Gupta, et al., Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 9 (1997) 147-149.[7] Y. Xia, J.J. McClelland, R. Gupta, et al., Replica molding using polymeric materials: a practical step toward nanomanufacturing, Adv. Mater. 9 (1997) 147-149.
-
[8] B.D. Gates, G.M. Whitesides, Replication of vertical features smaller than 2 nm by soft lithography, J. Am. Chem. Soc. 125 (2003) 14986-14987.[8] B.D. Gates, G.M. Whitesides, Replication of vertical features smaller than 2 nm by soft lithography, J. Am. Chem. Soc. 125 (2003) 14986-14987.
-
[9] X. Yan, S. Li, T.R. Cook, et al., Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum (Ⅱ) metallacycles, J. Am. Chem. Soc. 135 (2013) 14036-14039.[9] X. Yan, S. Li, T.R. Cook, et al., Hierarchical self-assembly: well-defined supramolecular nanostructures and metallohydrogels via amphiphilic discrete organoplatinum (Ⅱ) metallacycles, J. Am. Chem. Soc. 135 (2013) 14036-14039.
-
[10] M.D. Ward, P.R. Raithby, Functional behaviour from controlled self-assembly: challenges and prospects, Chem. Soc. Rev. 42 (2013) 1619-1636.[10] M.D. Ward, P.R. Raithby, Functional behaviour from controlled self-assembly: challenges and prospects, Chem. Soc. Rev. 42 (2013) 1619-1636.
-
[11] Y. Xia, G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 (1998) 153- 184.[11] Y. Xia, G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28 (1998) 153- 184.
-
[12] A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdev. 7 (2005) 281- 293.[12] A. Mata, A.J. Fleischman, S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems, Biomed. Microdev. 7 (2005) 281- 293.
-
[13] N. Bowden, S. Brittain, A. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.[13] N. Bowden, S. Brittain, A. Evans, J.W. Hutchinson, G.M. Whitesides, Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer, Nature 393 (1998) 146-149.
-
[14] J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization, Soft Matter 2 (2006) 310-323.[14] J. Genzer, J. Groenewold, Soft matter with hard skin: from skin wrinkles to templating and material characterization, Soft Matter 2 (2006) 310-323.
-
[15] Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J. Mech. Phys. Solids 53 (2005) 2101-2118.[15] Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in a film bonded to a compliant substrate, J. Mech. Phys. Solids 53 (2005) 2101-2118.
-
[16] P.C. Lin, S. Vajpayee, A. Jagota, et al., Mechanically tunable dry adhesive from wrinkled elastomers, Soft Matter 4 (2008) 1830-1835.[16] P.C. Lin, S. Vajpayee, A. Jagota, et al., Mechanically tunable dry adhesive from wrinkled elastomers, Soft Matter 4 (2008) 1830-1835.
-
[17] K. Efimenko, M. Rackaitis, E. Manias, et al., Nested self-similar wrinkling patterns in skins, Nat. Mater. 4 (2005) 293-297.[17] K. Efimenko, M. Rackaitis, E. Manias, et al., Nested self-similar wrinkling patterns in skins, Nat. Mater. 4 (2005) 293-297.
-
[18] C.M. Stafford, C. Harrison, K.L. Beers, et al., A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nat. Mater. 3 (2004) 545-550.[18] C.M. Stafford, C. Harrison, K.L. Beers, et al., A buckling-based metrology for measuring the elastic moduli of polymeric thin films, Nat. Mater. 3 (2004) 545-550.
-
[19] A.J. Nolte, M.F. Rubner, R.E. Cohen, Determining the Young's modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities, Macromolecules 38 (2005) 5367-5370.[19] A.J. Nolte, M.F. Rubner, R.E. Cohen, Determining the Young's modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities, Macromolecules 38 (2005) 5367-5370.
-
[20] S. Yang, K. Khare, P.C. Lin, Harnessing surface wrinkle patterns in soft matter, Adv. Funct. Mater. 20 (2010) 2550-2564.[20] S. Yang, K. Khare, P.C. Lin, Harnessing surface wrinkle patterns in soft matter, Adv. Funct. Mater. 20 (2010) 2550-2564.
-
[21] J.Y. Chung, A.J. Nolte, C.M. Stafford, Surface wrinkling: a versatile platform for measuring thin-film properties, Adv. Mater. 23 (2011) 349-368.[21] J.Y. Chung, A.J. Nolte, C.M. Stafford, Surface wrinkling: a versatile platform for measuring thin-film properties, Adv. Mater. 23 (2011) 349-368.
-
[22] D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212.[22] D.Y. Khang, H.Q. Jiang, Y. Huang, J.A. Rogers, A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates, Science 311 (2006) 208-212.
-
[23] M.W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment, Scr. Mater. 60 (2009) 44-47.[23] M.W. Moon, A. Vaziri, Surface modification of polymers using a multi-step plasma treatment, Scr. Mater. 60 (2009) 44-47.
-
[24] C.S. Davis, A.J. Crosby, Wrinkle morphologies with two distinct wavelengths, J. Polym. Sci. Pol. Phys. 50 (2012) 1225-1232.[24] C.S. Davis, A.J. Crosby, Wrinkle morphologies with two distinct wavelengths, J. Polym. Sci. Pol. Phys. 50 (2012) 1225-1232.
-
[25] J. Yin, C.H. Lu, Hierarchical surface wrinkles directed by wrinkled templates, Soft Matter 8 (2012) 6528-6534.[25] J. Yin, C.H. Lu, Hierarchical surface wrinkles directed by wrinkled templates, Soft Matter 8 (2012) 6528-6534.
-
[26] J.H. Lee, H.W. Ro, R. Huang, et al., Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films, Nano Lett. 12 (2012) 5995- 5999.[26] J.H. Lee, H.W. Ro, R. Huang, et al., Anisotropic, hierarchical surface patterns via surface wrinkling of nanopatterned polymer films, Nano Lett. 12 (2012) 5995- 5999.
-
[27] A. Chiche, C.M. Stafford, J.T. Cabral, Complex micropatterning of periodic structures on elastomeric surfaces, Soft Matter 4 (2008) 2360-2364.[27] A. Chiche, C.M. Stafford, J.T. Cabral, Complex micropatterning of periodic structures on elastomeric surfaces, Soft Matter 4 (2008) 2360-2364.
-
[28] Y. Li, S. Dai, J. John, K.R. Carter, Superhydrophobic surfaces from hierarchically structured wrinkled polymers, ACS Appl. Mater. Inter. 5 (2013) 11066-11073.[28] Y. Li, S. Dai, J. John, K.R. Carter, Superhydrophobic surfaces from hierarchically structured wrinkled polymers, ACS Appl. Mater. Inter. 5 (2013) 11066-11073.
-
[29] H. Hillborg, J.F. Anknerc, U.W. Gedde, et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer 41 (2000) 6851-6863.[29] H. Hillborg, J.F. Anknerc, U.W. Gedde, et al., Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques, Polymer 41 (2000) 6851-6863.
-
[30] H. Hillborg, N. Tomczak, A. Olah, et al., Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly (dimethylsiloxane), Langmuir 20 (2004) 785-794.[30] H. Hillborg, N. Tomczak, A. Olah, et al., Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly (dimethylsiloxane), Langmuir 20 (2004) 785-794.
-
[31] J.Y. Park, H.Y. Chae, C.H. Chung, et al., Controlled wavelength reduction in surface wrinkling of poly (dimethylsiloxane), Soft Matter 6 (2010) 677-684.[31] J.Y. Park, H.Y. Chae, C.H. Chung, et al., Controlled wavelength reduction in surface wrinkling of poly (dimethylsiloxane), Soft Matter 6 (2010) 677-684.
-
[32] N. Bowden, W.T. Huck, K.E. Paul, G.M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Appl. Phys. Lett. 75 (1999) 2557-2559.[32] N. Bowden, W.T. Huck, K.E. Paul, G.M. Whitesides, The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer, Appl. Phys. Lett. 75 (1999) 2557-2559.
-
[33] D.B.H. Chua, H.T. Ng, S.F.Y. Li, Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane, Appl. Phys. Lett. 76 (2000) 721-723.[33] D.B.H. Chua, H.T. Ng, S.F.Y. Li, Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane, Appl. Phys. Lett. 76 (2000) 721-723.
-
[34] H. Jiang, D.Y. Khang, J. Song, et al., Finite deformation mechanics in buckled thin films on compliant supports, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15607- 15612.[34] H. Jiang, D.Y. Khang, J. Song, et al., Finite deformation mechanics in buckled thin films on compliant supports, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 15607- 15612.
-
[35] D.H. Chu, A. Nemotoa, H. Itoa, Enhancement of dynamic wetting properties by direct fabrication on robust micro-micro hierarchical polymer surfaces, Appl. Surf. Sci. 300 (2014) 117-123.[35] D.H. Chu, A. Nemotoa, H. Itoa, Enhancement of dynamic wetting properties by direct fabrication on robust micro-micro hierarchical polymer surfaces, Appl. Surf. Sci. 300 (2014) 117-123.
-
[36] J. Feng, M.T. Tuominen, J.P. Rothstein, Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures, Adv. Funct. Mater. 21 (2011) 3715-3722.[36] J. Feng, M.T. Tuominen, J.P. Rothstein, Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures, Adv. Funct. Mater. 21 (2011) 3715-3722.
-
[37] C.H. Lu, H. Mohwald, A. Fery, A lithography-free method for directed colloidal crystal assembly based on wrinkling, Soft Matter 3 (2007) 1530-1536.[37] C.H. Lu, H. Mohwald, A. Fery, A lithography-free method for directed colloidal crystal assembly based on wrinkling, Soft Matter 3 (2007) 1530-1536.
-
[38] D.C. Hyun, G.D. Moon, C.J. Park, et al., Buckling-assisted patterning of multiple polymers, Adv. Mater. 22 (2010) 2642-2646.[38] D.C. Hyun, G.D. Moon, C.J. Park, et al., Buckling-assisted patterning of multiple polymers, Adv. Mater. 22 (2010) 2642-2646.
-
[39] S.G. Lee, H. Kim, H.H. Choi, et al., Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates, Adv. Mater. 25 (2013) 2162-2166.[39] S.G. Lee, H. Kim, H.H. Choi, et al., Evaporation-induced self-alignment and transfer of semiconductor nanowires by wrinkled elastomeric templates, Adv. Mater. 25 (2013) 2162-2166.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1182
- HTML全文浏览量: 7

下载: