Copper-catalyzed amide bond formation from formamides and carboxylic acids

Hong-Qiang Liu Jun Liu Yang-Hui Zhang Chang-Dong Shao Jing-Xun Yu

Citation:  Hong-Qiang Liu, Jun Liu, Yang-Hui Zhang, Chang-Dong Shao, Jing-Xun Yu. Copper-catalyzed amide bond formation from formamides and carboxylic acids[J]. Chinese Chemical Letters, 2015, 26(1): 11-14. doi: 10.1016/j.cclet.2014.09.007 shu

Copper-catalyzed amide bond formation from formamides and carboxylic acids

    通讯作者: Yang-Hui Zhang,
  • 基金项目:

    The work was supported by the National Natural Science Foundation of China (No. 21372176) (No. 21372176)

    Technology Commission (No. 11 J1409800) (No. 11 J1409800)

    the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. (Eastern Scholar)

摘要: A highly efficient copper-catalyzed approach to form amide bonds from formamides and carboxylic acids was developed. This protocol shows broad substrate scopes and high yields in the presence of 1 mol% catalyst and 4.0 equiv. formamides.

English

  • 
    1. [1] J.M. Humphrey, A.R. Chamberlin, Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino, Chem. Rev. 97 (1997) 2243-2266.[1] J.M. Humphrey, A.R. Chamberlin, Chemical synthesis of natural product peptides: coupling methods for the incorporation of noncoded amino, Chem. Rev. 97 (1997) 2243-2266.

    2. [2] (a) V.R. Pattabiraman, J.W. Bode, Rethinking amide bond synthesis, Nature 480 (2011) 471-479;[2] (a) V.R. Pattabiraman, J.W. Bode, Rethinking amide bond synthesis, Nature 480 (2011) 471-479;

    3. [3]

      (b) T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, The synthesis of naturally occurring peptides and their analogs, Curr. Opin. Drug Discov. Dev. 10 (2007) 768-783;(b) T. Cupido, J. Tulla-Puche, J. Spengler, F. Albericio, The synthesis of naturally occurring peptides and their analogs, Curr. Opin. Drug Discov. Dev. 10 (2007) 768-783;

    4. [4]

      (c) T.J. Deming, Synthetic polypeptides for biomedical applications, Prog. Polym. Sci. 32 (2007) 858-875;(c) T.J. Deming, Synthetic polypeptides for biomedical applications, Prog. Polym. Sci. 32 (2007) 858-875;

    5. [5]

      (d) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Catalytic amide formation from nonactivated carboxylic acids and amines, Chem. Soc. Rev. 43 (2014) 2714-2742.(d) H. Lundberg, F. Tinnis, N. Selander, H. Adolfsson, Catalytic amide formation from nonactivated carboxylic acids and amines, Chem. Soc. Rev. 43 (2014) 2714-2742.

    6. [3] (a) S.Y. Han, Y.A. Kim, Recent development of peptide coupling reagents in organic synthesis, Tetrahedron 60 (2004) 2447-2467;[3] (a) S.Y. Han, Y.A. Kim, Recent development of peptide coupling reagents in organic synthesis, Tetrahedron 60 (2004) 2447-2467;

    7. [7]

      (b) E. Valeur, M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev. 38 (2009) 606-631;(b) E. Valeur, M. Bradley, Amide bond formation: beyond the myth of coupling reagents, Chem. Soc. Rev. 38 (2009) 606-631;

    8. [8]

      (c) A. El-Faham, F. Albericio, Peptide coupling reagents, more than a letter soup, Chem. Rev. 111 (2011) 6557-6602.(c) A. El-Faham, F. Albericio, Peptide coupling reagents, more than a letter soup, Chem. Rev. 111 (2011) 6557-6602.

    9. [4] C.L. Allen, J.M.J. Williams, Metal-catalysed approaches to amide bond formation, Chem. Soc. Rev. 40 (2011) 3405-3415.[4] C.L. Allen, J.M.J. Williams, Metal-catalysed approaches to amide bond formation, Chem. Soc. Rev. 40 (2011) 3405-3415.

    10. [5] D.J.C. Constable, P.J. Dunn, J.D. Hayler, et al., Key green chemistry research areas - a perspective from pharmaceutical manufacturers, Green Chem. 9 (2007) 411-420.[5] D.J.C. Constable, P.J. Dunn, J.D. Hayler, et al., Key green chemistry research areas - a perspective from pharmaceutical manufacturers, Green Chem. 9 (2007) 411-420.

    11. [6] R.M. Lanigan, T.D. Sheppard, Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions, Eur. J. Org. Chem. 33 (2013) 7453-7465.[6] R.M. Lanigan, T.D. Sheppard, Recent developments in amide synthesis: direct amidation of carboxylic acids and transamidation reactions, Eur. J. Org. Chem. 33 (2013) 7453-7465.

    12. [7] J. Muzart, N,N-Dimethylformamide: much more than a solvent, Tetrahedron 65 (2009) 8313-8323.[7] J. Muzart, N,N-Dimethylformamide: much more than a solvent, Tetrahedron 65 (2009) 8313-8323.

    13. [8] S. Ding, N. Jiao, N,N-Dimethylformamide: a multipurpose building block, Angew. Chem. Int. Ed. 51 (2012) 9226-9237.[8] S. Ding, N. Jiao, N,N-Dimethylformamide: a multipurpose building block, Angew. Chem. Int. Ed. 51 (2012) 9226-9237.

    14. [9] For the synthesis of amides with formamides, see: (a) Z. Liu, J. Zhang, S. Chen, et al., Cross coupling of acyl and aminyl radicals: direct synthesis of amides catalyzed by Bu

    15. [15]

      (b) H. Huang, G. Yuan, X. Li, H. Jiang, Electrochemical synthesis of amides: direct transformation of methyl ketones with formamides, Tetrahedron Lett. 54 (2013) 7156-7159;(b) H. Huang, G. Yuan, X. Li, H. Jiang, Electrochemical synthesis of amides: direct transformation of methyl ketones with formamides, Tetrahedron Lett. 54 (2013) 7156-7159;

    16. [16]

      (c) W. Chen, K. Li, Z. Hu, et al., Utility of dysprosium as a reductant in coupling reactions of acyl chlorides: the synthesis of amides and diaryl-substituted acetylenes, Organometallics 30 (2011) 2026-2030;(c) W. Chen, K. Li, Z. Hu, et al., Utility of dysprosium as a reductant in coupling reactions of acyl chlorides: the synthesis of amides and diaryl-substituted acetylenes, Organometallics 30 (2011) 2026-2030;

    17. [17]

      (d) K. Xu, Y. Hu, S. Zhang, Z. Zha, Z. Wang, Direct amidation of alcohols with Nsubstituted formamides under transition metal-free conditions, Chem. Eur. J. 18 (2012) 9793-9797;(d) K. Xu, Y. Hu, S. Zhang, Z. Zha, Z. Wang, Direct amidation of alcohols with Nsubstituted formamides under transition metal-free conditions, Chem. Eur. J. 18 (2012) 9793-9797;

    18. [18]

      (e) C. Hu, X. Yan, X. Zhou, Z. Li, Copper-catalyzed formation of N,N-dimethyl benzamide from nitrile and DMF under an O2 atmosphere, Org. Biomol. Chem. 11 (2013) 8179-8182;(e) C. Hu, X. Yan, X. Zhou, Z. Li, Copper-catalyzed formation of N,N-dimethyl benzamide from nitrile and DMF under an O2 atmosphere, Org. Biomol. Chem. 11 (2013) 8179-8182;

    19. [19]

      (f) G.M. Coppinger, Preparations of N,N-dimethylamides, J. Am. Chem. Soc. 76 (1954) 1372-1373;(f) G.M. Coppinger, Preparations of N,N-dimethylamides, J. Am. Chem. Soc. 76 (1954) 1372-1373;

    20. [20]

      (g) T. Kumagai, T. Anki, T. Ebi, et al., An effective synthesis of N,N-dimethylamides from carboxylic acids and a new route from N,N-dimethylamides to 1,2-diaryl-1,2diketones, Tetrahedron 66 (2010) 8968-8973;(g) T. Kumagai, T. Anki, T. Ebi, et al., An effective synthesis of N,N-dimethylamides from carboxylic acids and a new route from N,N-dimethylamides to 1,2-diaryl-1,2diketones, Tetrahedron 66 (2010) 8968-8973;

    21. [21]

      (h) H. Li, J. Xie, Q. Xue, Y. Cheng, C. Zhu, Metal-free n-Bu4NI-catalyzed direct synthesis of amides from alcohols and N,N-disubstituted formamides, Tetrahedron Lett. 53 (2012) 6479-6482;(h) H. Li, J. Xie, Q. Xue, Y. Cheng, C. Zhu, Metal-free n-Bu4NI-catalyzed direct synthesis of amides from alcohols and N,N-disubstituted formamides, Tetrahedron Lett. 53 (2012) 6479-6482;

    22. [22]

      (l) J. Ju, M. Jeong, J. Moon, H.M. Jung, S. Lee, Aminocarbonylation of aryl halides using a nickel phosphite catalytic system, Org. Lett. 9 (2007) 4615-4618;(l) J. Ju, M. Jeong, J. Moon, H.M. Jung, S. Lee, Aminocarbonylation of aryl halides using a nickel phosphite catalytic system, Org. Lett. 9 (2007) 4615-4618;

    23. [23]

      (j) D.N. Sawant, Y.S. Wagh, K.D. Bhatte, B.M. Bhanage, Palladium-catalyzed carbon-monoxide-free aminocarbonylation of aryl halides using N-substituted formamides as an amide source, J. Org. Chem. 76 (2011) 5489-5494;(j) D.N. Sawant, Y.S. Wagh, K.D. Bhatte, B.M. Bhanage, Palladium-catalyzed carbon-monoxide-free aminocarbonylation of aryl halides using N-substituted formamides as an amide source, J. Org. Chem. 76 (2011) 5489-5494;

    24. [24]

      (k) P.J. Tambade, Y.P. Patil, M.J. Bhanushali, B.M. Bhanage, Pd/C: an efficient, heterogeneous and reusable catalyst for carbon monoxide-free aminocarbonylation of aryl iodides, Tetrahedron Lett. 49 (2008) 2221-2224;(k) P.J. Tambade, Y.P. Patil, M.J. Bhanushali, B.M. Bhanage, Pd/C: an efficient, heterogeneous and reusable catalyst for carbon monoxide-free aminocarbonylation of aryl iodides, Tetrahedron Lett. 49 (2008) 2221-2224;

    25. [25]

      (l) A. Schnyder, M. Beller, G. Mehltretter, et al., Synthesis of primary aromatic amides by aminocarbonylation of aryl halides using formamide as an ammonia synthon, J. Org. Chem. 66 (2001) 4311-4315;(l) A. Schnyder, M. Beller, G. Mehltretter, et al., Synthesis of primary aromatic amides by aminocarbonylation of aryl halides using formamide as an ammonia synthon, J. Org. Chem. 66 (2001) 4311-4315;

    26. [26]

      (m) B. Alogh-Hergovich, G. Speier, The oxygenation of flavonol by copper(I) and copper(Ⅱ) flavonolate complexes. The crystal and molecular structure of bis(flavonolato)copper(Ⅱ), J. Chem. Soc. Chem. Commun. (1991) 551-552;(m) B. Alogh-Hergovich, G. Speier, The oxygenation of flavonol by copper(I) and copper(Ⅱ) flavonolate complexes. The crystal and molecular structure of bis(flavonolato)copper(Ⅱ), J. Chem. Soc. Chem. Commun. (1991) 551-552;

    27. [27]

      (n) K. Hosoi, K. Nozaki, T. Hiyama, Carbon monoxide-free aminocarbonylation of aryl and alkenyl iodides using DMF as an amide source, Org. Lett. 4 (2002) 2849-2851;(n) K. Hosoi, K. Nozaki, T. Hiyama, Carbon monoxide-free aminocarbonylation of aryl and alkenyl iodides using DMF as an amide source, Org. Lett. 4 (2002) 2849-2851;

    28. [28]

      (o) Y. Jo, J. Ju, J. Choe, K.H. Song, S. Lee, The scope and limitation of nickelcatalyzed aminocarbonylation of aryl bromides from formamide derivatives, J. Org. Chem. 74 (2009) 6358-6361;(o) Y. Jo, J. Ju, J. Choe, K.H. Song, S. Lee, The scope and limitation of nickelcatalyzed aminocarbonylation of aryl bromides from formamide derivatives, J. Org. Chem. 74 (2009) 6358-6361;

    29. [29]

      (p) T. He, H. Li, P. Li, L. Wang, Direct amidation of azoles with formamides via metal-free C-H activation in the presence of tert-butyl perbenzoate, Chem. Commun. 47 (2011) 8946-8948;(p) T. He, H. Li, P. Li, L. Wang, Direct amidation of azoles with formamides via metal-free C-H activation in the presence of tert-butyl perbenzoate, Chem. Commun. 47 (2011) 8946-8948;

    30. [30]

      (q) G.S. Kumar, C.U. Maheswari, R.A. Kumar, M.L. Kantam, K.R. Reddy, Coppercatalyzed oxidative C-O coupling by direct C-H bond activation of formamides: synthesis of enol carbamates and 2-carbonyl-substituted phenol carbamates, Angew. Chem. Int. Ed. 50 (2011) 11748-11751;(q) G.S. Kumar, C.U. Maheswari, R.A. Kumar, M.L. Kantam, K.R. Reddy, Coppercatalyzed oxidative C-O coupling by direct C-H bond activation of formamides: synthesis of enol carbamates and 2-carbonyl-substituted phenol carbamates, Angew. Chem. Int. Ed. 50 (2011) 11748-11751;

    31. [31]

      (r) Y. Nakao, H. Idei, K.S. Kanyiva, T. Hiyama, Hydrocarbamoylation of unsaturated bonds by nickel/Lewis-acid catalysis, J. Am. Chem. Soc. 131 (2009) 5070-5071;(r) Y. Nakao, H. Idei, K.S. Kanyiva, T. Hiyama, Hydrocarbamoylation of unsaturated bonds by nickel/Lewis-acid catalysis, J. Am. Chem. Soc. 131 (2009) 5070-5071;

    32. [32]

      (s) T. Fujihara, Y. Katafuchi, T. Iwai, J. Terao, Y. Tsuji, Palladium-catalyzed intermolecular addition of formamides to alkynes, J. Am. Chem. Soc. 132 (2010) 2094-2098.(s) T. Fujihara, Y. Katafuchi, T. Iwai, J. Terao, Y. Tsuji, Palladium-catalyzed intermolecular addition of formamides to alkynes, J. Am. Chem. Soc. 132 (2010) 2094-2098.

    33. [10] P.S. Kumar, G.S. Kumar, N.V. Reddy, K.R. Reddy, Copper-catalyzed oxidative coupling of carboxylic acids with N,N-dialkylformamides: an approach to the synthesis of amides, Eur. J. Org. Chem. (2013) 1218-1222.[10] P.S. Kumar, G.S. Kumar, N.V. Reddy, K.R. Reddy, Copper-catalyzed oxidative coupling of carboxylic acids with N,N-dialkylformamides: an approach to the synthesis of amides, Eur. J. Org. Chem. (2013) 1218-1222.

    34. [11] Y.X. Xie, R.J. Song, X.H. Yang, J.N. Xiang, J.H. Li, Copper-catalyzed amidation of acids using formamides as the amine source, Eur. J. Org. Chem. (2013) 5737-5742.[11] Y.X. Xie, R.J. Song, X.H. Yang, J.N. Xiang, J.H. Li, Copper-catalyzed amidation of acids using formamides as the amine source, Eur. J. Org. Chem. (2013) 5737-5742.

    35. [12] S. Priyadarshini, P.J. Amal Joseph, M.L. Kantam, Copper catalyzed cross-coupling reactions of carboxylic acids: an expedient route to amides, 5-substituted glactams and a-acyloxy esters, RSC Adv. 3 (2013) 18283-18287.[12] S. Priyadarshini, P.J. Amal Joseph, M.L. Kantam, Copper catalyzed cross-coupling reactions of carboxylic acids: an expedient route to amides, 5-substituted glactams and a-acyloxy esters, RSC Adv. 3 (2013) 18283-18287.

    36. [13] (a) D. Li, M. Wang, J. Liu, J.Q. Zhao, L. Wang, Cu(Ⅱ)-catalyzed decarboxylative acylation of acyl C-H of formamides with a-oxocarboxylic acids leading to a-ketoamides, Chem. Commun. 49 (2013) 3640-3642;[13] (a) D. Li, M. Wang, J. Liu, J.Q. Zhao, L. Wang, Cu(Ⅱ)-catalyzed decarboxylative acylation of acyl C-H of formamides with a-oxocarboxylic acids leading to a-ketoamides, Chem. Commun. 49 (2013) 3640-3642;

    37. [37]

      (b) H. Wang, L.N. Guo, X.H. Duan, Copper-catalyzed oxidative condensation of a-oxocarboxylic acids with formamides: synthesis of a-ketoamides, Org. Biomol. Chem. 11 (2013) 4573-4576.(b) H. Wang, L.N. Guo, X.H. Duan, Copper-catalyzed oxidative condensation of a-oxocarboxylic acids with formamides: synthesis of a-ketoamides, Org. Biomol. Chem. 11 (2013) 4573-4576.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1260
  • HTML全文浏览量:  23
文章相关
  • 发布日期:  2014-09-16
  • 收稿日期:  2014-05-15
  • 网络出版日期:  2014-07-14
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章