A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions

Peng Li Sridhar Regati Hui-Cai Huang Hadi D. Arman Bang-Lin Chen John C.-G. Zhao

Citation:  Peng Li, Sridhar Regati, Hui-Cai Huang, Hadi D. Arman, Bang-Lin Chen, John C.-G. Zhao. A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions[J]. Chinese Chemical Letters, 2015, 26(1): 6-10. doi: 10.1016/j.cclet.2014.10.022 shu

A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions

    通讯作者: Bang-Lin Chen,
    John C.-G. Zhao,
摘要: A new highly efficient and reusable Cu(I)-MOF has been developed for the synthesis of propargylamine compounds via the three-component reaction of secondary amines, alkynes, and aromatic aldehydes under solvent-free conditions. The desired propargylamines were obtained in good to excellent yields with a low catalyst loading. The catalyst may be recovered and reused for up to 5 cycles without major loss of activity. This protocol has the advantages of excellent yields, low catalyst loading, and catalyst recyclability.

English

  • 
    1. [1] O. Bar-Am, T. Amit, O. Weinreb, M.B. Youdim, S. Mandel, Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-beta protein precursor: involvement of MAPK and PKC activation, J. Alzheimers Dis. 21 (2010) 361-371.[1] O. Bar-Am, T. Amit, O. Weinreb, M.B. Youdim, S. Mandel, Propargylamine containing compounds as modulators of proteolytic cleavage of amyloid-beta protein precursor: involvement of MAPK and PKC activation, J. Alzheimers Dis. 21 (2010) 361-371.

    2. [2] I. Bolea, A. Gella, M. Unzeta, Propargylamine-derived multitarget-directed ligands: fighting Alzheimer's disease with monoamine oxidase inhibitors, J. Neural Transm. 120 (2013) 893-902.[2] I. Bolea, A. Gella, M. Unzeta, Propargylamine-derived multitarget-directed ligands: fighting Alzheimer's disease with monoamine oxidase inhibitors, J. Neural Transm. 120 (2013) 893-902.

    3. [3] J.J. Chen, D.M. Swope, Clinical pharmacology of rasagiline: a novel, secondgeneration propargylamine for the treatment of Parkinson disease, J. Clin. Pharm. 45 (2005) 878-894.[3] J.J. Chen, D.M. Swope, Clinical pharmacology of rasagiline: a novel, secondgeneration propargylamine for the treatment of Parkinson disease, J. Clin. Pharm. 45 (2005) 878-894.

    4. [4] V.K.Y. Lo, Y.G. Liu, M.K. Wong, C.M. Che, Gold(Ⅲ) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction, Org. Lett. 8 (2006) 1529-1532.[4] V.K.Y. Lo, Y.G. Liu, M.K. Wong, C.M. Che, Gold(Ⅲ) salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction, Org. Lett. 8 (2006) 1529-1532.

    5. [5] I. Matsuda, J. Sakakibara, H. Nagashima, A novel-approach to alpha-silylmethylene- beta-lactams via Rh-catalyzed silylcarbonylation of propargylamine derivatives, Tetrahedron Lett. 32 (1991) 7431-7434.[5] I. Matsuda, J. Sakakibara, H. Nagashima, A novel-approach to alpha-silylmethylene- beta-lactams via Rh-catalyzed silylcarbonylation of propargylamine derivatives, Tetrahedron Lett. 32 (1991) 7431-7434.

    6. [6] C.P. Sar, T. Kalai, J. Jeko, K. Hideg, Synthesis of deprenyl-like nitroxide free radicals and their diamagnetic derivatives, Arkivoc (2012) 47-59.[6] C.P. Sar, T. Kalai, J. Jeko, K. Hideg, Synthesis of deprenyl-like nitroxide free radicals and their diamagnetic derivatives, Arkivoc (2012) 47-59.

    7. [7] S. Okamoto, Synthesis of enantio-enriched axially chiral allenyltitaniums and their reaction with electrophiles, J. Synth. Org. Chem. Jpn. 59 (2001) 1204-1211.[7] S. Okamoto, Synthesis of enantio-enriched axially chiral allenyltitaniums and their reaction with electrophiles, J. Synth. Org. Chem. Jpn. 59 (2001) 1204-1211.

    8. [8] M.J. Albaladejo, F. Alonso, Y. Moglie, M. Yus, Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on titania, Eur. J. Org. Chem. (2012) 3093-3104.[8] M.J. Albaladejo, F. Alonso, Y. Moglie, M. Yus, Three-component coupling of aldehydes, amines, and alkynes catalyzed by oxidized copper nanoparticles on titania, Eur. J. Org. Chem. (2012) 3093-3104.

    9. [9] F. Alonso, M. Yus, Heterogeneous catalytic homocoupling ofterminal alkynes, ACS Catal. 2 (2012) 1441-1451.[9] F. Alonso, M. Yus, Heterogeneous catalytic homocoupling ofterminal alkynes, ACS Catal. 2 (2012) 1441-1451.

    10. [10] J. Dulle, K. Thirunavukkarasu, M.C. Mittelmeijer-Hazeleger, et al., Efficient threecomponent coupling catalysed by mesoporous copper-aluminum based nanocomposites, Green Chem. 15 (2013) 1238-1243.[10] J. Dulle, K. Thirunavukkarasu, M.C. Mittelmeijer-Hazeleger, et al., Efficient threecomponent coupling catalysed by mesoporous copper-aluminum based nanocomposites, Green Chem. 15 (2013) 1238-1243.

    11. [11] B.J. Borah, S.J. Borah, L. Saikia, D.K. Dutta, Efficient three-component coupling reactions catalyzed by Cu-0-nanoparticles stabilized on modified montmorillonite, Catal. Sci. Technol. 4 (2014) 1047-1054.[11] B.J. Borah, S.J. Borah, L. Saikia, D.K. Dutta, Efficient three-component coupling reactions catalyzed by Cu-0-nanoparticles stabilized on modified montmorillonite, Catal. Sci. Technol. 4 (2014) 1047-1054.

    12. [12] Q.L. Zhu, Q. Xu, Metal-organic framework composites, Chem. Soc. Rev. 43 (2014) 5468-5512.[12] Q.L. Zhu, Q. Xu, Metal-organic framework composites, Chem. Soc. Rev. 43 (2014) 5468-5512.

    13. [13] G.H. Mahdavinia, H. Sepehrian, MCM-41 anchored sulfonic acid (MCM-41-RSO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction, Chin. Chem. Lett. 19 (2008) 1435-1439.[13] G.H. Mahdavinia, H. Sepehrian, MCM-41 anchored sulfonic acid (MCM-41-RSO3H): a mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction, Chin. Chem. Lett. 19 (2008) 1435-1439.

    14. [14] J. Lee, O.K. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459.[14] J. Lee, O.K. Farha, J. Roberts, et al., Metal-organic framework materials as catalysts, Chem. Soc. Rev. 38 (2009) 1450-1459.

    15. [15] A. Dhakshinamoorthy, H. Garcia, Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles, Chem. Soc. Rev. 43 (2014) 5750-5765.[15] A. Dhakshinamoorthy, H. Garcia, Metal-organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles, Chem. Soc. Rev. 43 (2014) 5750-5765.

    16. [16] K. Jayaramulu, K.K.R. Datta, M.V. Suresh, et al., Honeycomb porous framework of zinc(Ⅱ): effective host for palladium nanoparticles for efficient three-component (A3) coupling and selective gas storage, ChemPlusChem 77 (2012) 743-747.[16] K. Jayaramulu, K.K.R. Datta, M.V. Suresh, et al., Honeycomb porous framework of zinc(Ⅱ): effective host for palladium nanoparticles for efficient three-component (A3) coupling and selective gas storage, ChemPlusChem 77 (2012) 743-747.

    17. [17] I. Luz, F.X. Llabrés i Xamena, A. Corma, Bridging homogeneous and heterogeneous catalysis with MOFs: Cu(I)-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines, J. Catal. 285 (2012) 285-291.[17] I. Luz, F.X. Llabrés i Xamena, A. Corma, Bridging homogeneous and heterogeneous catalysis with MOFs: Cu(I)-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines, J. Catal. 285 (2012) 285-291.

    18. [18] J. Yang, P. Li, L. Wang, Postsynthetic modification of metal-organic framework as a highly efficient and recyclable catalyst for three-component (aldehyde-alkyneamine) coupling reaction, Catal. Commun. 27 (2012) 58-62.[18] J. Yang, P. Li, L. Wang, Postsynthetic modification of metal-organic framework as a highly efficient and recyclable catalyst for three-component (aldehyde-alkyneamine) coupling reaction, Catal. Commun. 27 (2012) 58-62.

    19. [19] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998p. 30.[19] P.T. Anastas, J.C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998p. 30.

    20. [20] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Catalysis by metal-organic frameworks in water, Chem. Commun. 50 (2014) 12800-12814.[20] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Catalysis by metal-organic frameworks in water, Chem. Commun. 50 (2014) 12800-12814.

    21. [21] A. Dhakshinamoorthy,M. Opanasenko, J. Cejka, Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups, Adv. Synth. Catal. 355 (2013) 247-268.[21] A. Dhakshinamoorthy,M. Opanasenko, J. Cejka, Metal organic frameworks as solid catalysts in condensation reactions of carbonyl groups, Adv. Synth. Catal. 355 (2013) 247-268.

    22. [22] A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, et al., Iron(Ⅲ) metal-organic frameworks as solid Lewis acids for the isomerization of a-pinene oxide, Catal. Sci. Technol. 2 (2012) 324-330.[22] A. Dhakshinamoorthy, M. Alvaro, H. Chevreau, et al., Iron(Ⅲ) metal-organic frameworks as solid Lewis acids for the isomerization of a-pinene oxide, Catal. Sci. Technol. 2 (2012) 324-330.

    23. [23] K. Liang, H.G. Zheng, Y.L. Song, et al., Self-assembly of interpenetrating coordination nets formed from interpenetrating cationic and anionic three-dimensional diamondoid cluster coordination polymers, Angew. Chem. Int. Ed. 43 (2004) 5900-5903.[23] K. Liang, H.G. Zheng, Y.L. Song, et al., Self-assembly of interpenetrating coordination nets formed from interpenetrating cationic and anionic three-dimensional diamondoid cluster coordination polymers, Angew. Chem. Int. Ed. 43 (2004) 5900-5903.

    24. [24] H.H. Fei, D.L. Rogow, S.R.J. Oliver, Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I), J. Am. Chem. Soc. 132 (2010) 7202-7209.[24] H.H. Fei, D.L. Rogow, S.R.J. Oliver, Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I), J. Am. Chem. Soc. 132 (2010) 7202-7209.

    25. [25] M.C. Das, Q. Guo, Y. He, et al., Interplay of metalloligand and organic ligand to tune micropores within Isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules, J. Am. Chem. Soc. 134 (2012) 8703-8710.[25] M.C. Das, Q. Guo, Y. He, et al., Interplay of metalloligand and organic ligand to tune micropores within Isostructural mixed-metal organic frameworks (M'MOFs) for their highly selective separation of chiral and achiral small molecules, J. Am. Chem. Soc. 134 (2012) 8703-8710.

    26. [26] S. Regati, Y.B. He, M. Thimmaiah, et al., Enantioselective ring-opening of mesoepoxides by aromatic amines catalyzed by a homochiral metal-organic framework, Chem. Commun. 49 (2013) 9836-9838.[26] S. Regati, Y.B. He, M. Thimmaiah, et al., Enantioselective ring-opening of mesoepoxides by aromatic amines catalyzed by a homochiral metal-organic framework, Chem. Commun. 49 (2013) 9836-9838.

    27. [27] P. Li, S. Regati, R.J. Butcher, et al., Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction, Tetrahedron Lett. 52 (2011) 6220-6222.[27] P. Li, S. Regati, R.J. Butcher, et al., Hydrogen-bonding 2D metal-organic solids as highly robust and efficient heterogeneous green catalysts for Biginelli reaction, Tetrahedron Lett. 52 (2011) 6220-6222.

    28. [28] M. Thimmaiah, P. Li, S. Regati, B. Chen, J.C.G. Zhao, Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3, 5-dicarbonitriles using Zn(Ⅱ) and Cd(Ⅱ) metalorganic frameworks (MOFs) under solvent-free conditions, Tetrahedron Lett. 53 (2012) 4870-4872.[28] M. Thimmaiah, P. Li, S. Regati, B. Chen, J.C.G. Zhao, Multi-component synthesis of 2-amino-6-(alkylthio)pyridine-3, 5-dicarbonitriles using Zn(Ⅱ) and Cd(Ⅱ) metalorganic frameworks (MOFs) under solvent-free conditions, Tetrahedron Lett. 53 (2012) 4870-4872.

    29. [29] X.W. Wang, H. Guo, M.J. Liu, X.Y. Wang, D.S. Deng, 2D Naphthalene disulfonate- cadmiun coordination polymer with 2,4,5-tri(4-pyridyl)-imidazole as a co-ligand: structure and catalytic property, Chin. Chem. Lett. 25 (2014) 243-246.[29] X.W. Wang, H. Guo, M.J. Liu, X.Y. Wang, D.S. Deng, 2D Naphthalene disulfonate- cadmiun coordination polymer with 2,4,5-tri(4-pyridyl)-imidazole as a co-ligand: structure and catalytic property, Chin. Chem. Lett. 25 (2014) 243-246.

    30. [30] M.K. Patil, M. Keller, B.M. Reddy, P. Pale, J. Sommer, Copper zeolites as green catalysts for multicomponent reactions of aldehydes, terminal alkynes and amines: an efficient and green synthesis of propargylamines, Eur. J. Org. Chem. (2008) 4440-4445.[30] M.K. Patil, M. Keller, B.M. Reddy, P. Pale, J. Sommer, Copper zeolites as green catalysts for multicomponent reactions of aldehydes, terminal alkynes and amines: an efficient and green synthesis of propargylamines, Eur. J. Org. Chem. (2008) 4440-4445.

    31. [31] M. Jeganathan, A. Dhakshinamoorthy, K. Pitchumani, One-pot synthesis of propargylamines using Ag(I)-exchanged K10 montmorillonite clay as reusable catalyst in water, ACS Sustain. Chem. Eng. 2 (2014) 781-787.[31] M. Jeganathan, A. Dhakshinamoorthy, K. Pitchumani, One-pot synthesis of propargylamines using Ag(I)-exchanged K10 montmorillonite clay as reusable catalyst in water, ACS Sustain. Chem. Eng. 2 (2014) 781-787.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1289
  • HTML全文浏览量:  10
文章相关
  • 发布日期:  2014-11-01
  • 收稿日期:  2014-09-17
  • 网络出版日期:  2014-10-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章