Catalytic activity of TiO2 nanoparticles in the synthesis of some 2, 3-disubstituted dihydroquinazolin-4(1H)-ones
English
Catalytic activity of TiO2 nanoparticles in the synthesis of some 2, 3-disubstituted dihydroquinazolin-4(1H)-ones
-
Key words:
- TiO2 nanoparticles
- / Quinazolin-4(1H)-one
- / Green chemistry
-
-
-
[1] A. Loupy, Solvent-free microwave organic synthesis as an efficient procedure for green chemistry, C. R. Chim. 7 (2004) 103-112.[1] A. Loupy, Solvent-free microwave organic synthesis as an efficient procedure for green chemistry, C. R. Chim. 7 (2004) 103-112.
-
[2] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.[2] C.W. Lim, I.S. Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today 5 (2010) 412-434.
-
[3] K.B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents, Adv. Colloid Interface Sci. 169 (2011) 59-79.[3] K.B. Narayanan, N. Sakthivel, Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents, Adv. Colloid Interface Sci. 169 (2011) 59-79.
-
[4] R. Kumar, S.M. Roopan, A. Prabhakarn, et al., Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles, Spectrochim. Acta A 90 (2012) 173-176.[4] R. Kumar, S.M. Roopan, A. Prabhakarn, et al., Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles, Spectrochim. Acta A 90 (2012) 173-176.
-
[5] S.M. Roopan, A. Bharathi, R. Kumar, et al., Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles, Colloids Surf. B 92 (2012) 209- 212.[5] S.M. Roopan, A. Bharathi, R. Kumar, et al., Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles, Colloids Surf. B 92 (2012) 209- 212.
-
[6] S.M. Roopan, R. Rohit, G. Madhumitha, et al., Low-cost and eco-friendly phytosynthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity, Ind. Crops Prod. 43 (2013) 631-635.[6] S.M. Roopan, R. Rohit, G. Madhumitha, et al., Low-cost and eco-friendly phytosynthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity, Ind. Crops Prod. 43 (2013) 631-635.
-
[7] A.K. Mitta, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv. 31 (2013) 346-356.[7] A.K. Mitta, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts, Biotechnol. Adv. 31 (2013) 346-356.
-
[8] K.S.H. Naveen, G. Kumar, L. Karthik, Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp., Arch. Appl. Sci. 6 (2010) 161- 167.[8] K.S.H. Naveen, G. Kumar, L. Karthik, Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp., Arch. Appl. Sci. 6 (2010) 161- 167.
-
[9] A. Rajakumar, A.A. Rahuman, S.M. Roopan, et al., Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria, Spectrochim. Acta A 91 (2012) 23-29.[9] A. Rajakumar, A.A. Rahuman, S.M. Roopan, et al., Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria, Spectrochim. Acta A 91 (2012) 23-29.
-
[10] H.J. Parka, J.T. McConnella, S. Boddohib, M.J. Kipper, P.A. Johnson, Synthesis and characterization of enzyme-magnetic nanoparticle complexes: effect of size on activity and recovery, Colloids Surf. B 83 (2011) 198-203.[10] H.J. Parka, J.T. McConnella, S. Boddohib, M.J. Kipper, P.A. Johnson, Synthesis and characterization of enzyme-magnetic nanoparticle complexes: effect of size on activity and recovery, Colloids Surf. B 83 (2011) 198-203.
-
[11] S.M. Roopan, F.R.N. Khan, SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-indolo[3,2-c]-acridine derivatives, Med. Chem. Res. 20 (2011) 732-737.[11] S.M. Roopan, F.R.N. Khan, SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-indolo[3,2-c]-acridine derivatives, Med. Chem. Res. 20 (2011) 732-737.
-
[12] P. Mohanpuria, K. Nisha, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nano Res. 10 (2008) 507-517.[12] P. Mohanpuria, K. Nisha, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, J. Nano Res. 10 (2008) 507-517.
-
[13] F. Shi, W. Wang, W. Huang, Bifunctional TiO2 catalysts for efficient Cr(VI) photoreduction under solar light irradiation without addition of acids, Chin. J. Chem. Phys. 25 (2012) 214-218.[13] F. Shi, W. Wang, W. Huang, Bifunctional TiO2 catalysts for efficient Cr(VI) photoreduction under solar light irradiation without addition of acids, Chin. J. Chem. Phys. 25 (2012) 214-218.
-
[14] Z.N. Tisseh, M. Dabiri, M. Nobahar, et al., Catalyst-free synthesis of N-rich heterocycles via multi-component reactions, Tetrahedron 68 (2012) 3351-3356.[14] Z.N. Tisseh, M. Dabiri, M. Nobahar, et al., Catalyst-free synthesis of N-rich heterocycles via multi-component reactions, Tetrahedron 68 (2012) 3351-3356.
-
[15] S.M. Roopan, F.R.N. Khan, ZnO nanoparticles in the synthesis of AB ring core of camptothecin, Chem. Pap. 64 (2010) 812-817.[15] S.M. Roopan, F.R.N. Khan, ZnO nanoparticles in the synthesis of AB ring core of camptothecin, Chem. Pap. 64 (2010) 812-817.
-
[16] S.M. Roopan, V.R. Hathwar, F.N. Khan, et al., Synthesis, crystal structure and antibacterial activity of 1-((2-chloroquinolin-3-yl)-methyl)-pyridin-2(1H)-one, Chin. J. Struct. Chem. 29 (2010) 1612-1617.[16] S.M. Roopan, V.R. Hathwar, F.N. Khan, et al., Synthesis, crystal structure and antibacterial activity of 1-((2-chloroquinolin-3-yl)-methyl)-pyridin-2(1H)-one, Chin. J. Struct. Chem. 29 (2010) 1612-1617.
-
[17] M.M. Heravi, S. Moghimi, Catalytic multicomponent reactions based on isocyanides, J. Iran. Chem. Soc. 8 (2011) 306-373.[17] M.M. Heravi, S. Moghimi, Catalytic multicomponent reactions based on isocyanides, J. Iran. Chem. Soc. 8 (2011) 306-373.
-
[18] S.M. Roopan, F.R.N. Khan, R. Rajesh, Camptothecin synthons: 2-chloro-3-(chloromethyl) quinolines and their biological activity, J. Pharm. Res. 3 (2010) 1442- 1443.[18] S.M. Roopan, F.R.N. Khan, R. Rajesh, Camptothecin synthons: 2-chloro-3-(chloromethyl) quinolines and their biological activity, J. Pharm. Res. 3 (2010) 1442- 1443.
-
[19] M. Dabiri, P. Salehi, S. Otokesh, et al., Efficient synthesis of mono- and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2 12H2O as a reusable catalyst in water and ethanol, Tetrahedron Lett. 46 (2005) 6123-6126.[19] M. Dabiri, P. Salehi, S. Otokesh, et al., Efficient synthesis of mono- and disubstituted 2,3-dihydroquinazolin-4(1H)-ones using KAl(SO4)2 12H2O as a reusable catalyst in water and ethanol, Tetrahedron Lett. 46 (2005) 6123-6126.
-
[20] M. Wang, T.T. Zhang, Z.G. Song, Eco-friendly synthesis of 2-substituted- 2,3-dihydro-4(1H)-quinazolinones in water, Chin. Chem. Lett. 22 (2011) 427-430.[20] M. Wang, T.T. Zhang, Z.G. Song, Eco-friendly synthesis of 2-substituted- 2,3-dihydro-4(1H)-quinazolinones in water, Chin. Chem. Lett. 22 (2011) 427-430.
-
[21] R.Z. Qiao, B.L. Xu, Y.H. Wang, A facile synthesis of 2-substituted-2,3-dihydro- 4(1H)-quinazolinones in 2,2,2-trifluoroethanol, Chin. Chem. Lett. 18 (2007) 656- 658.[21] R.Z. Qiao, B.L. Xu, Y.H. Wang, A facile synthesis of 2-substituted-2,3-dihydro- 4(1H)-quinazolinones in 2,2,2-trifluoroethanol, Chin. Chem. Lett. 18 (2007) 656- 658.
-
[22] M. Bakavoli, A. Shiri, Z. Ebrahimpour, et al., Clean heterocyclic synthesis in water: I2/KI catalyzed one-pot synthesis of quinazolin-4(3H)-ones, Chin. Chem. Lett. 19 (2008) 1403-1406.[22] M. Bakavoli, A. Shiri, Z. Ebrahimpour, et al., Clean heterocyclic synthesis in water: I2/KI catalyzed one-pot synthesis of quinazolin-4(3H)-ones, Chin. Chem. Lett. 19 (2008) 1403-1406.
-
[23] M. Wang, Z.G. Song, T.T. Zhang, Strontium chloride-catalyzed one-pot synthesis of 4(3H)-quinazolinones under solvent-free conditions, Chin. Chem. Lett. 21 (2010) 1167-1170.[23] M. Wang, Z.G. Song, T.T. Zhang, Strontium chloride-catalyzed one-pot synthesis of 4(3H)-quinazolinones under solvent-free conditions, Chin. Chem. Lett. 21 (2010) 1167-1170.
-
[24] B. Wang, Z. Li, X.N. Wang, et al., A new approach to the facile synthesis of 2- substituted-quinazolin-4(3H)-ones, Chin. Chem. Lett. 22 (2011) 951-953.[24] B. Wang, Z. Li, X.N. Wang, et al., A new approach to the facile synthesis of 2- substituted-quinazolin-4(3H)-ones, Chin. Chem. Lett. 22 (2011) 951-953.
-
[25] S.M. Roopan, A. Bharathi, A. Prabhakarn, et al., Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract, Spectrochim. Acta A 98 (2012) 86-90.[25] S.M. Roopan, A. Bharathi, A. Prabhakarn, et al., Efficient phyto-synthesis and structural characterization of rutile TiO2 nanoparticles using Annona squamosa peel extract, Spectrochim. Acta A 98 (2012) 86-90.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1484
- HTML全文浏览量: 62

下载: