Redispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphate

Rong-Hui Lai Ping-Jiang Dong Yong-Li Wang Jian-Bin Luo

Citation:  Rong-Hui Lai, Ping-Jiang Dong, Yong-Li Wang, Jian-Bin Luo. Redispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphate[J]. Chinese Chemical Letters, 2014, 25(2): 295-298. shu

Redispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphate

    通讯作者: Jian-Bin Luo,
  • 基金项目:

    We acknowledge the financial supports from the Natural Science Foundation of China (No. 50973069) (No. 50973069)

    the project of Postgraduate Degree Construction, Southwest University for Nationalities (No. 2013XWD-S0703). (No. 2013XWD-S0703)

摘要: Althoughmuch effort has been focused on the preparation of stable amorphous calciumphosphate (ACP) nanoparticles in aqueous solution, the redispersibility and long-term stability of ACP nanoparticles in aqueous solution remains an unresolved problem. In this work, stable colloidal ACPs were prepared by using an organic bisphosphonate (BP) as a sterically hindered agent in aqueous solution. The harvested calcium phosphate nanoparticles were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). ICP-AES, FTIR and XRD results suggested the particles were ACP. DLS and TEM results indicated that the size of the ACP nanoparticles were in the range of 60 nm with a spherical morphology. The resulting calciumphosphate nanoparticles retained its amorphous nature in aqueous solution for at least 6 months at room temperature due to the stabilizing effect of the organic bisphosphonate. Moreover, the surface of the ACP nanoparticles adsorbed with the organic bisphosphate used showed good redispersibility and high colloid stability both in organic and aqueous solutions.

English

  • 
    1. [1] H.A. Lowenstam, S. Weiner, Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons, Science 227 (1985) 51-53.[1] H.A. Lowenstam, S. Weiner, Transformation of amorphous calcium phosphate to crystalline dahillite in the radular teeth of chitons, Science 227 (1985) 51-53.

    2. [2] I.M. Weiss, N. Tuross, L. Addadi, S. Weiner, Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite, J. Exp. Zool. 293 (2002) 478-491.[2] I.M. Weiss, N. Tuross, L. Addadi, S. Weiner, Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite, J. Exp. Zool. 293 (2002) 478-491.

    3. [3] E. Beniash, J. Aizenberg, L. Addadi, S. Weiner, Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. B: Biol. Sci. 264 (1997) 461-465.[3] E. Beniash, J. Aizenberg, L. Addadi, S. Weiner, Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. B: Biol. Sci. 264 (1997) 461-465.

    4. [4] M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa, Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating, Biomaterials 17 (1996) 1771-1777.[4] M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa, Differences of bone bonding ability and degradation behaviour in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating, Biomaterials 17 (1996) 1771-1777.

    5. [5] A.S. Posner, F. Betts, Synthetic amorphous calcium phosphate and its relation to bone mineral structure, Acc. Chem. Res. 8 (1975) 273-281.[5] A.S. Posner, F. Betts, Synthetic amorphous calcium phosphate and its relation to bone mineral structure, Acc. Chem. Res. 8 (1975) 273-281.

    6. [6] T. Kanazawa, T. Umegaki, N. Uchiyama, Thermal crystallisation of amorphous calcium phosphate to a-tricalcium phosphate, J. Chem. Technol. Biotechnol. 32 (1982) 399-406.[6] T. Kanazawa, T. Umegaki, N. Uchiyama, Thermal crystallisation of amorphous calcium phosphate to a-tricalcium phosphate, J. Chem. Technol. Biotechnol. 32 (1982) 399-406.

    7. [7] E.T. Hwang, R. Tatavarty, J.Y. Chung, M.B. Gu, New functional amorphous calcium phosphate nanocomposites by enzyme-assisted biomineralization, ACS Appl. Mater. Interfaces 5 (2013) 532-537.[7] E.T. Hwang, R. Tatavarty, J.Y. Chung, M.B. Gu, New functional amorphous calcium phosphate nanocomposites by enzyme-assisted biomineralization, ACS Appl. Mater. Interfaces 5 (2013) 532-537.

    8. [8] J. Li, Y.C. Chen, Y.C. Tseng, S. Mozumdar, L. Huang, Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery, J. Control. Release 142 (2010) 416-421.[8] J. Li, Y.C. Chen, Y.C. Tseng, S. Mozumdar, L. Huang, Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery, J. Control. Release 142 (2010) 416-421.

    9. [9] A. Oyane, H. Araki, Y. Sogo, A. Ito, H. Tsurushima, Spontaneous assembly of DNA- amorphous calcium phosphate nanocomposite spheres for surface-mediated gene transfer, CrystEngComm-15 (2013) 4994-4997.[9] A. Oyane, H. Araki, Y. Sogo, A. Ito, H. Tsurushima, Spontaneous assembly of DNA- amorphous calcium phosphate nanocomposite spheres for surface-mediated gene transfer, CrystEngComm-15 (2013) 4994-4997.

    10. [10] M. Epple, K. Ganesan, R. Heumann, et al., Application of calcium phosphate nanoparticles in biomedicine, J. Mater. Chem. 20 (2010) 18-23.[10] M. Epple, K. Ganesan, R. Heumann, et al., Application of calcium phosphate nanoparticles in biomedicine, J. Mater. Chem. 20 (2010) 18-23.

    11. [11] C. Qi, Y.J. Zhu, F. Chen, Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery, Chem. Asian J. 8 (2013) 88-94.[11] C. Qi, Y.J. Zhu, F. Chen, Fructose 1,6-bisphosphate trisodium salt as a new phosphorus source for the rapid microwave synthesis of porous calcium-phosphate microspheres and their application in drug delivery, Chem. Asian J. 8 (2013) 88-94.

    12. [12] P. Keblinski, S.R. Phillpot, D. Wolf, H. Gleiter, Thermodynamic criterion for the stability of amorphous intergranular films in covalent materials, Phys. Rev. Lett. 77 (1996) 2965-2968.[12] P. Keblinski, S.R. Phillpot, D. Wolf, H. Gleiter, Thermodynamic criterion for the stability of amorphous intergranular films in covalent materials, Phys. Rev. Lett. 77 (1996) 2965-2968.

    13. [13] J. Christoffersen, M.R. Christoffersen, W. Kibalczyc, F.A. Andersen, A contribution to the understanding of the formation of calcium phosphates, J. Cryst. Growth 94 (1989) 767-777.[13] J. Christoffersen, M.R. Christoffersen, W. Kibalczyc, F.A. Andersen, A contribution to the understanding of the formation of calcium phosphates, J. Cryst. Growth 94 (1989) 767-777.

    14. [14] Y.B. Li, T. Wiliana, K.C. Tam, Synthesis of amorphous calcium phosphate using various types of cyclodextrins, Mater. Res. Bull. 42 (2007) 820-827.[14] Y.B. Li, T. Wiliana, K.C. Tam, Synthesis of amorphous calcium phosphate using various types of cyclodextrins, Mater. Res. Bull. 42 (2007) 820-827.

    15. [15] C.F. Qiu, X.F. Xiao, R.F. Liu, Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol, Ceram. Int. 34 (2008) 1747-1751.[15] C.F. Qiu, X.F. Xiao, R.F. Liu, Biomimetic synthesis of spherical nano-hydroxyapatite in the presence of polyethylene glycol, Ceram. Int. 34 (2008) 1747-1751.

    16. [16] R. Li, G.M. Chen, X.L. Ma, et al., Mineralization of HA crystals regulated by terephthaloyl chloride-modified silk fibroin films, Chin. Chem. Lett. 22 (2011) 1107-1110.[16] R. Li, G.M. Chen, X.L. Ma, et al., Mineralization of HA crystals regulated by terephthaloyl chloride-modified silk fibroin films, Chin. Chem. Lett. 22 (2011) 1107-1110.

    17. [17] M.G. Ma, Y.J. Zhu, J. Chang, Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite, J. Phys. Chem. B 110 (2006) 14226-14230.[17] M.G. Ma, Y.J. Zhu, J. Chang, Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite, J. Phys. Chem. B 110 (2006) 14226-14230.

    18. [18] P. Zhang, Z.Y. Yang, S.X. Qiu, et al., Synthesis and characterization of poly (ethylene glycol)/hydroxyapatite hybrid nanomaterials, Chem. J. Chin. Univ. 33 (2012) 22-25.[18] P. Zhang, Z.Y. Yang, S.X. Qiu, et al., Synthesis and characterization of poly (ethylene glycol)/hydroxyapatite hybrid nanomaterials, Chem. J. Chin. Univ. 33 (2012) 22-25.

    19. [19] G.A. Rodan, H.A. Fleisch, Bisphosphonates: mechanisms of action, J. Clin. Invest. 97 (1996) 2692-2696.[19] G.A. Rodan, H.A. Fleisch, Bisphosphonates: mechanisms of action, J. Clin. Invest. 97 (1996) 2692-2696.

    20. [20] S. Boissier, M. Ferreras, O. Peyruchaud, et al., Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases, Cancer Res. 60 (2000) 2949-2954.[20] S. Boissier, M. Ferreras, O. Peyruchaud, et al., Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases, Cancer Res. 60 (2000) 2949-2954.

    21. [21] M. Naves, L. Gano, N. Pereira, et al., Synthesis, characterization and biodistribution of bisphosphonates Sm-153 complexes, correlation with molecular modeling interaction studies, Nucl. Med. Biol. 29 (2002) 329-338.[21] M. Naves, L. Gano, N. Pereira, et al., Synthesis, characterization and biodistribution of bisphosphonates Sm-153 complexes, correlation with molecular modeling interaction studies, Nucl. Med. Biol. 29 (2002) 329-338.

    22. [22] S. Boissier, S. Magnetto, L. Frappart, et al., Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices, Cancer Res. 57 (1997) 3890-3894.[22] S. Boissier, S. Magnetto, L. Frappart, et al., Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices, Cancer Res. 57 (1997) 3890-3894.

    23. [23] P. Kafarski, B. Lejczak, Aminophosphonic acids of potential medical importance, Curr. Med. Chem. Anti Cancer Agents 1 (2001) 301-312.[23] P. Kafarski, B. Lejczak, Aminophosphonic acids of potential medical importance, Curr. Med. Chem. Anti Cancer Agents 1 (2001) 301-312.

    24. [24] A. Zieba, G. Sethuraman, F. Perez, G.H. Nancollas, D. Cameron, Influence of organic phosphonates on hydroxyapatite crystal growth kinetics, Langmuir 12 (1996) 2853-2858.[24] A. Zieba, G. Sethuraman, F. Perez, G.H. Nancollas, D. Cameron, Influence of organic phosphonates on hydroxyapatite crystal growth kinetics, Langmuir 12 (1996) 2853-2858.

    25. [25] D. Villemin, B. Moreau, A. Elbilali, et al., Green synthesis of poly(aminomethylenephosphonic) acids, Phosphorus Sulfur Silicon Relat. Elem. 185 (2010) 2511-2519.[25] D. Villemin, B. Moreau, A. Elbilali, et al., Green synthesis of poly(aminomethylenephosphonic) acids, Phosphorus Sulfur Silicon Relat. Elem. 185 (2010) 2511-2519.

    26. [26] L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization, Adv. Mater. 15 (2003) 959-970.[26] L. Addadi, S. Raz, S. Weiner, Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization, Adv. Mater. 15 (2003) 959-970.

    27. [27] X.Y. Zhou, Y.R. Jiang, C.C. Li, X.Y. Xie, Synthesis of poly(ethylene glycol)-functionalized hydroxyapatite organic colloid intended for nanocomposites, Chin. Chem. Lett. 24 (2013) 647-650.[27] X.Y. Zhou, Y.R. Jiang, C.C. Li, X.Y. Xie, Synthesis of poly(ethylene glycol)-functionalized hydroxyapatite organic colloid intended for nanocomposites, Chin. Chem. Lett. 24 (2013) 647-650.

    28. [28] B. Khorsand, G. Lapointe, C. Brett, J.K. Oh, Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages, Biomacromolecules 14 (2013) 2103-2111.[28] B. Khorsand, G. Lapointe, C. Brett, J.K. Oh, Intracellular drug delivery nanocarriers of glutathione-responsive degradable block copolymers having pendant disulfide linkages, Biomacromolecules 14 (2013) 2103-2111.

    29. [29] Y.R. Cai, H.H. Pan, X.R. Xu, et al., Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: a smart and biocompatible drug release system, Adv. Mater. 19 (2007) 3081-3083.[29] Y.R. Cai, H.H. Pan, X.R. Xu, et al., Ultrasonic controlled morphology transformation of hollow calcium phosphate nanospheres: a smart and biocompatible drug release system, Adv. Mater. 19 (2007) 3081-3083.

    30. [30] K.W. Wang, Y.J. Zhu, X.Y. Chen, et al., Flower-like hierarchically nanostructured hydroxyapatite hollow spheres: facile preparation and application in anticancer drug cellular deliver, Chem. Asian J. 5 (2010) 2477-2482.[30] K.W. Wang, Y.J. Zhu, X.Y. Chen, et al., Flower-like hierarchically nanostructured hydroxyapatite hollow spheres: facile preparation and application in anticancer drug cellular deliver, Chem. Asian J. 5 (2010) 2477-2482.

    31. [31] M. Uota, H. Arakawa, N. Kitamura, et al., Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach, Langmuir 21 (2005) 4724-4728.[31] M. Uota, H. Arakawa, N. Kitamura, et al., Synthesis of high surface area hydroxyapatite nanoparticles by mixed surfactant-mediated approach, Langmuir 21 (2005) 4724-4728.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1410
  • HTML全文浏览量:  31
文章相关
  • 收稿日期:  2013-09-23
  • 网络出版日期:  2013-10-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章