Azide-functionalization of carbon nanotubes by electrochemical oxidation of N3- in situ
English
Azide-functionalization of carbon nanotubes by electrochemical oxidation of N3- in situ
-
Key words:
- Electrochemical treatment
- / Carbon nanotubes
- / Azide
- / Functionalization
-
-
-
[1] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106 (2006) 1105-1136.[1] D. Tasis, N. Tagmatarchis, A. Bianco, M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106 (2006) 1105-1136.
-
[2] N. Karousis, N. Tagmatarchis, Current progress on the chemical modification of carbon nanotubes, Chem. Rev. 110 (2010) 5366-5397.[2] N. Karousis, N. Tagmatarchis, Current progress on the chemical modification of carbon nanotubes, Chem. Rev. 110 (2010) 5366-5397.
-
[3] M.A. Khalilzadeh, H.K. Maleh, A. Amiri, F. Gholami, R.M. Mazhabi, Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode, Chin. Chem. Lett. 21 (2010) 1467-1470.[3] M.A. Khalilzadeh, H.K. Maleh, A. Amiri, F. Gholami, R.M. Mazhabi, Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode, Chin. Chem. Lett. 21 (2010) 1467-1470.
-
[4] M. Ahmadipour, M.A. Taher, H. Beitollahi, R. Hosseinzadeh, Electrocatalytic determination of L-cysteine using a modified carbon nanotube paste electrode: application to the analysis of some real samples, Chin. Chem. Lett. 23 (2012) 981- 984.[4] M. Ahmadipour, M.A. Taher, H. Beitollahi, R. Hosseinzadeh, Electrocatalytic determination of L-cysteine using a modified carbon nanotube paste electrode: application to the analysis of some real samples, Chin. Chem. Lett. 23 (2012) 981- 984.
-
[5] A. Devadoss, C.E.D. Chidsey, Azide-modified graphitic surface for covalent attachment of alkyne-terminated molecules by "click" chemistry, J. Am. Chem. Soc. 129 (2007) 5370-5371.[5] A. Devadoss, C.E.D. Chidsey, Azide-modified graphitic surface for covalent attachment of alkyne-terminated molecules by "click" chemistry, J. Am. Chem. Soc. 129 (2007) 5370-5371.
-
[6] E.C. Landis, R.J. Hamers, Covalent grafting of redox-active molecules to vertically aligned carbon nanofiber arrays via "click" chemistry, Chem. Mater. 21 (2009) 724-730.[6] E.C. Landis, R.J. Hamers, Covalent grafting of redox-active molecules to vertically aligned carbon nanofiber arrays via "click" chemistry, Chem. Mater. 21 (2009) 724-730.
-
[7] A. Devadoss, N.K. Devaraj, C.E.D. Chidsey, Preparation of azide-modified carbon surfaces for coupling to various species related applications, US Patent C07C247/14, 20110184196, 2011-2-28.[7] A. Devadoss, N.K. Devaraj, C.E.D. Chidsey, Preparation of azide-modified carbon surfaces for coupling to various species related applications, US Patent C07C247/14, 20110184196, 2011-2-28.
-
[8] J.P. Collman, N.K. Devaraj, T.P.A. Eberspacher, C.E.D. Chidsey, Mixed azide-terminated monolayers: a platform for modifying electrode surfaces, Langmuir 22 (2006) 2457-2464.[8] J.P. Collman, N.K. Devaraj, T.P.A. Eberspacher, C.E.D. Chidsey, Mixed azide-terminated monolayers: a platform for modifying electrode surfaces, Langmuir 22 (2006) 2457-2464.
-
[9] S. Ciampi, T. Bocking, K.A. Kilian, et al., Functionalization of acetylene-terminated monolayers on Si(1 0 0) surfaces: a click chemistry approach, Langmuir 23 (2007) 9320-9329.[9] S. Ciampi, T. Bocking, K.A. Kilian, et al., Functionalization of acetylene-terminated monolayers on Si(1 0 0) surfaces: a click chemistry approach, Langmuir 23 (2007) 9320-9329.
-
[10] C.G. Liu, H.T. Fang, F. Li, M. Liu, H.M. Cheng, Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors, J. Power Sources 160 (2006) 758-760.[10] C.G. Liu, H.T. Fang, F. Li, M. Liu, H.M. Cheng, Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors, J. Power Sources 160 (2006) 758-760.
-
[11] J.L. Bahr, J.P. Yang, D.V. Kosynkin, et al., Functionalization of carbon nanotubes by electrochemical reduction of ary diazonium salts: a bucky paper electrode, J. Am. Chem. Soc. 123 (2001) 6536-6542.[11] J.L. Bahr, J.P. Yang, D.V. Kosynkin, et al., Functionalization of carbon nanotubes by electrochemical reduction of ary diazonium salts: a bucky paper electrode, J. Am. Chem. Soc. 123 (2001) 6536-6542.
-
[12] S.E. Kooi, U. Schlicht, M. Burghard, K. Kern, Electrochemical modification of single carbon nanotubes, Angew. Chem. Int. Ed. 41 (2002) 1353-1355.[12] S.E. Kooi, U. Schlicht, M. Burghard, K. Kern, Electrochemical modification of single carbon nanotubes, Angew. Chem. Int. Ed. 41 (2002) 1353-1355.
-
[13] E. Lieber, C.N.R. Ran, T.S. Chan, C.W.W. Hoffman, Infrared spectra of organic azides, Anal. Chem. 29 (1957) 916-918.[13] E. Lieber, C.N.R. Ran, T.S. Chan, C.W.W. Hoffman, Infrared spectra of organic azides, Anal. Chem. 29 (1957) 916-918.
-
[14] S.R. Carlo, J. Torres, D.H. Fairbrother, Thermal and electron-induced reactions of hydrazoic acid (HN3) adsorbed on gold and ice, J. Phys. Chem. B 105 (2001) 6148- 6157.[14] S.R. Carlo, J. Torres, D.H. Fairbrother, Thermal and electron-induced reactions of hydrazoic acid (HN3) adsorbed on gold and ice, J. Phys. Chem. B 105 (2001) 6148- 6157.
-
[15] P.G. Cao, K. Xu, J.R. Heath, Azidation of silicon(1 1 1) surfaces, J. Am. Chem. Soc. 130 (2008) 14910-14911.[15] P.G. Cao, K. Xu, J.R. Heath, Azidation of silicon(1 1 1) surfaces, J. Am. Chem. Soc. 130 (2008) 14910-14911.
-
[16] Z. Syrgiannis, F. Hauke, J. Röhrl, et al., Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides, Eur. J. Org. Chem. (2008) 2544-2550.[16] Z. Syrgiannis, F. Hauke, J. Röhrl, et al., Covalent sidewall functionalization of SWNTs by nucleophilic addition of lithium amides, Eur. J. Org. Chem. (2008) 2544-2550.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1338
- HTML全文浏览量: 31

下载: