Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization

Yi-Lin Wu Yong-Sheng Yan Jian-Ming Pan Xiao-Hui Dai Wei-Dong Shi Min-Jia Meng

Citation:  Yi-Lin Wu, Yong-Sheng Yan, Jian-Ming Pan, Xiao-Hui Dai, Wei-Dong Shi, Min-Jia Meng. Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization[J]. Chinese Chemical Letters, 2014, 25(2): 273-278. shu

Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization

    通讯作者: Yong-Sheng Yan,
  • 基金项目:

    This work was financially supported by the National Natural Science Foundation of China (Nos. 21077046, 21107037, 21176107, 21174057, 2100403, 21207051) (Nos. 21077046, 21107037, 21176107, 21174057, 2100403, 21207051)

    National key basic research development program (973 Program, No. 2012CBB21500) (973 Program, No. 2012CBB21500)

    Ph.D. Programs Foundation of Ministry of Education of China (No. 20123227120015)  (No. 20123227120015)

    Natural Science Foundation of Jiangsu Province (Nos. BK2011461, SBK2011459, BK2011514). China Postdoctoral Science Foundation funded project (Nos. 2012M511220, 2013M530240). (Nos. BK2011461, SBK2011459, BK2011514)

摘要: A simple and effective method for surface molecularly imprinted composite membranes (MICMs) for artemisinin (Ars) based on regenerated cellulose membranes was first prepared through surfaceinitiated atom transfer radical polymerization (ATRP), and the as-prepared MICMs were then evaluated as adsorbents for selective recognition and separation of Ars molecules. Batch rebinding studies were conducted to determine the specific adsorption equilibrium, kinetics and selective permeation performance. The adsorption capacity of MICMs toward Ars by the Langmuir isotherm model was 2.008 mg g-1, which was nearly 5.0 times higher than non-molecularly imprinted composite membranes (NICMs). The kinetic property of MICMs was well-fitted by the pseudo-second-order rate equation. The selective permeation experiments were successfully investigated to prove the excellent selective permeation performance for Ars than the competitive analog (artemether).

English

  • 
    1. [1] A.L. Schilmiller, R.L. Last, E. Pichersky, Harnessing plant trichome biochemistry for the production of useful compounds, Plant J. 54 (2008) 702-711.[1] A.L. Schilmiller, R.L. Last, E. Pichersky, Harnessing plant trichome biochemistry for the production of useful compounds, Plant J. 54 (2008) 702-711.

    2. [2] A. Gautam, T. Ahmed, J. Paliwal, V. Batra, Pharmacokinetics and pharmacodynamics of endoperoxide antimalarials, Curr. Drug. Metab. 10 (2009) 289-306.[2] A. Gautam, T. Ahmed, J. Paliwal, V. Batra, Pharmacokinetics and pharmacodynamics of endoperoxide antimalarials, Curr. Drug. Metab. 10 (2009) 289-306.

    3. [3] J.B. Jiang, G.Q. Li, X.B. Guo, Y.C. Kong, K. Arnold, Antimalarial activity of mefloquine and qinghaosu, Lancet 2 (1982) 285-288.[3] J.B. Jiang, G.Q. Li, X.B. Guo, Y.C. Kong, K. Arnold, Antimalarial activity of mefloquine and qinghaosu, Lancet 2 (1982) 285-288.

    4. [4] E.V. Piletska, K. Karim, M. Cutler, A.P. Sergey, Development of the protocol for purification of artemisinin based on combination of commercial and computationally designed adsorbents, J. Sep. Sci. 36 (2013) 400-406.[4] E.V. Piletska, K. Karim, M. Cutler, A.P. Sergey, Development of the protocol for purification of artemisinin based on combination of commercial and computationally designed adsorbents, J. Sep. Sci. 36 (2013) 400-406.

    5. [5] M.N. Maier, W. Lindner, Chiral recognition applications of molecularly imprinted polymers: a critical review, Anal. Bioanal. Chem. 389 (2007) 377-397.[5] M.N. Maier, W. Lindner, Chiral recognition applications of molecularly imprinted polymers: a critical review, Anal. Bioanal. Chem. 389 (2007) 377-397.

    6. [6] G. Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies, Angew. Chem. Int. Ed. 34 (1995) 1812-1832.[6] G. Wulff, Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies, Angew. Chem. Int. Ed. 34 (1995) 1812-1832.

    7. [7] P. Wang, X.F. Fu, J. Li, et al., Preparation of hydrophilic molecularly imprinted polymers for tetracycline antibiotics recognition, Chin. Chem. Lett. 22 (2011) 611-614.[7] P. Wang, X.F. Fu, J. Li, et al., Preparation of hydrophilic molecularly imprinted polymers for tetracycline antibiotics recognition, Chin. Chem. Lett. 22 (2011) 611-614.

    8. [8] Y. Wang, T.X. Wei, Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers, Chin. Chem. Lett. 24 (2013) 813-816.[8] Y. Wang, T.X. Wei, Surface plasmon resonance sensor chips for the recognition of bovine serum albumin via electropolymerized molecularly imprinted polymers, Chin. Chem. Lett. 24 (2013) 813-816.

    9. [9] S.A. Piletsky, T.L. Pansyuk, E.V. Piletskaya, I.A. Nichools, M. Ulbricht, Receptor and transport properties of imprinted polymer membranes - a review, J. Membr. Sci. 157 (1999) 263-278.[9] S.A. Piletsky, T.L. Pansyuk, E.V. Piletskaya, I.A. Nichools, M. Ulbricht, Receptor and transport properties of imprinted polymer membranes - a review, J. Membr. Sci. 157 (1999) 263-278.

    10. [10] M. Ypsjolawa, K. Murakoshi, T. Kogita, et al., Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups, Eur. Polym. J. 42 (2006) 2532-2539.[10] M. Ypsjolawa, K. Murakoshi, T. Kogita, et al., Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups, Eur. Polym. J. 42 (2006) 2532-2539.

    11. [11] M. Ulbricht, Membrane separations using molecularly imprinted polymers, J. Chromatogr. B 804 (2004) 113-125.[11] M. Ulbricht, Membrane separations using molecularly imprinted polymers, J. Chromatogr. B 804 (2004) 113-125.

    12. [12] R. Kiełczyński, M. Bryjak, Molecularly imprinted membranes for cinchona alkaloids separation, Sep. Purif. Technol. 41 (2005) 231-235.[12] R. Kiełczyński, M. Bryjak, Molecularly imprinted membranes for cinchona alkaloids separation, Sep. Purif. Technol. 41 (2005) 231-235.

    13. [13] I. Koyuncu, O.A. Arikan, M.R. Wiesner, C. Rice, Removal of hormones and antibiotics by nanofiltration membranes, J. Membr. Sci. 309 (2008) 94-101.[13] I. Koyuncu, O.A. Arikan, M.R. Wiesner, C. Rice, Removal of hormones and antibiotics by nanofiltration membranes, J. Membr. Sci. 309 (2008) 94-101.

    14. [14] C.L. Winson, Y.L. Lay, A.G. Fane, Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: a review, Water Res. 44 (2010) 21-40.[14] C.L. Winson, Y.L. Lay, A.G. Fane, Impacts of salinity on the performance of high retention membrane bioreactors for water reclamation: a review, Water Res. 44 (2010) 21-40.

    15. [15] M.E. Avramescu, W.F.C. Sager, M.H.V. Mulder, M. Wessling, Preparation of ethylene vinylalcohol copolymer membranes suitable for ligand coupling in affinity separation, J. Membr. Sci. 210 (2002) 155-173.[15] M.E. Avramescu, W.F.C. Sager, M.H.V. Mulder, M. Wessling, Preparation of ethylene vinylalcohol copolymer membranes suitable for ligand coupling in affinity separation, J. Membr. Sci. 210 (2002) 155-173.

    16. [16] W. Albrecht, F. Santoso, K. Lutzow, et al., Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies, J. Membr. Sci. 292 (2007) 145-157.[16] W. Albrecht, F. Santoso, K. Lutzow, et al., Preparation of aminated microfiltration membranes by degradable functionalization using plain PEI membranes with various morphologies, J. Membr. Sci. 292 (2007) 145-157.

    17. [17] S.A. Saufi, C.J. Fee, Fractionation of beta-lactoglobulin from whey by mixed matrix membrane ion exchange chromatography, Biotechnol. Bioeng. 103 (2009) 138- 147.[17] S.A. Saufi, C.J. Fee, Fractionation of beta-lactoglobulin from whey by mixed matrix membrane ion exchange chromatography, Biotechnol. Bioeng. 103 (2009) 138- 147.

    18. [18] G. Yang, L. Zhang, Regenerated cellulose microporous membranes by mixing cellulose cuoxam with a water soluble polymer, J. Membr. Sci. 114 (1996) 149- 155.[18] G. Yang, L. Zhang, Regenerated cellulose microporous membranes by mixing cellulose cuoxam with a water soluble polymer, J. Membr. Sci. 114 (1996) 149- 155.

    19. [19] K. Matyjaszewski, J. Xia, Atom transfer radical polymerization, Chem. Rev. 101 (2001) 2921-2990.[19] K. Matyjaszewski, J. Xia, Atom transfer radical polymerization, Chem. Rev. 101 (2001) 2921-2990.

    20. [20] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.[20] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.

    21. [21] Y.S. Ho, G. McKay, The sorption of lead (Ⅱ) ions on peat, Water Res. 33 (1999) 578- 584.[21] Y.S. Ho, G. McKay, The sorption of lead (Ⅱ) ions on peat, Water Res. 33 (1999) 578- 584.

    22. [22] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.[22] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (1999) 451-465.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1241
  • HTML全文浏览量:  19
文章相关
  • 收稿日期:  2013-10-11
  • 网络出版日期:  2013-11-01
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章