Electrochemical performance of NaCo2O4 as electrode for supercapacitors
English
Electrochemical performance of NaCo2O4 as electrode for supercapacitors
-
-
-
[1] A.S. Aricò1, P. Bruce, B. Scrosati, J.M. Tarascon, W. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-377.[1] A.S. Aricò1, P. Bruce, B. Scrosati, J.M. Tarascon, W. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (2005) 366-377.
-
[2] P. Hall, M. Mirzaeian, S. Fletcher, et al., Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci. 3 (2010) 1238-1251.[2] P. Hall, M. Mirzaeian, S. Fletcher, et al., Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci. 3 (2010) 1238-1251.
-
[3] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.[3] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.
-
[4] M.G. Sullivan, R. Kötz, O. Haas, Thick active layers of electrochemically modified glassy carbon. Electrochemical impedance studies, J. Electroehem. Soc. 147 (2000) 308-317.[4] M.G. Sullivan, R. Kötz, O. Haas, Thick active layers of electrochemically modified glassy carbon. Electrochemical impedance studies, J. Electroehem. Soc. 147 (2000) 308-317.
-
[5] R. Salige, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225 (1998) 81-85.[5] R. Salige, U. Fischer, C. Herta, J. Fricke, High surface area carbon aerogels for supercapacitors, J. Non-Cryst. Solids 225 (1998) 81-85.
-
[6] C.C. Hu, W.C. Chen, K.H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151 (2004) A281-A290.[6] C.C. Hu, W.C. Chen, K.H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, J. Electrochem. Soc. 151 (2004) A281-A290.
-
[7] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage, Adv. Mater. 22 (2010) E28-E62.[7] C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage, Adv. Mater. 22 (2010) E28-E62.
-
[8] K.T. Lee, C.B. Tsai, W.H. Ho, N.L. Wu, Superabsorbent polymer binder for achieving MnO2 supercapacitors of greatly enhanced capacitance density, Electrochem. Commun. 12 (2010) 886-889.[8] K.T. Lee, C.B. Tsai, W.H. Ho, N.L. Wu, Superabsorbent polymer binder for achieving MnO2 supercapacitors of greatly enhanced capacitance density, Electrochem. Commun. 12 (2010) 886-889.
-
[9] X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem. 21 (2011) 671-679.[9] X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem. 21 (2011) 671-679.
-
[10] W. Zhang, Y.H. Qu, L.J. Guo, Performance of PbO2/activated carbonhybrid supercapacitor with carbon foam substrate, Chin. Chem. Lett. 23 (2012) 623-626.[10] W. Zhang, Y.H. Qu, L.J. Guo, Performance of PbO2/activated carbonhybrid supercapacitor with carbon foam substrate, Chin. Chem. Lett. 23 (2012) 623-626.
-
[11] Q.T. Qua, Y. Shi, S. Tian, et al., A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2, J. Power Sources 194 (2009) 1222-1225.[11] Q.T. Qua, Y. Shi, S. Tian, et al., A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2, J. Power Sources 194 (2009) 1222-1225.
-
[12] L.R. Wang, F. Ran, Y.T. Tan, L. Zhao, L.B. Kong, L. Kang, Coral reel-like polyanaline manotubes prepared by a reactive template of manganese oxide for supercapacitor, Chin. Chem. Lett. 22 (2011) 964-968.[12] L.R. Wang, F. Ran, Y.T. Tan, L. Zhao, L.B. Kong, L. Kang, Coral reel-like polyanaline manotubes prepared by a reactive template of manganese oxide for supercapacitor, Chin. Chem. Lett. 22 (2011) 964-968.
-
[13] Q.T. Qu, L. Li, S. Tian, et al., A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2 ·0.6H2O, J. Power Sources 195 (2010) 2789-2794.[13] Q.T. Qu, L. Li, S. Tian, et al., A cheap asymmetric supercapacitor with high energy at high power: activated carbon//K0.27MnO2 ·0.6H2O, J. Power Sources 195 (2010) 2789-2794.
-
[14] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 2699-2703.[14] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 2699-2703.
-
[15] V. Gupta, N. Miura, Electrochemically deposited polyaniline nanowire's network a high-performance electrode material for redox supercapacitor, Electrochem. Solid State Lett. 8 (2005) A630-A632.[15] V. Gupta, N. Miura, Electrochemically deposited polyaniline nanowire's network a high-performance electrode material for redox supercapacitor, Electrochem. Solid State Lett. 8 (2005) A630-A632.
-
[16] V. Gupta, N. Miura, Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites, J. Power Sources 157 (2006) 616-620.[16] V. Gupta, N. Miura, Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites, J. Power Sources 157 (2006) 616-620.
-
[17] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B 56 (1997) 12685-12687.[17] I. Terasaki, Y. Sasago, K. Uchinokura, Large thermoelectric power in NaCo2O4 single crystals, Phys. Rev. B 56 (1997) 12685-12687.
-
[18] C. Fouassier, G. Matejka, J.M. Reau, P. Hagenmuller, Sur de nouveaux bronzes oxygéné s de formule NaxCoO2 (χ1). Le système cobalt-oxygène-sodium, J. Solid State Chem. 6 (1973) 532-537.[18] C. Fouassier, G. Matejka, J.M. Reau, P. Hagenmuller, Sur de nouveaux bronzes oxygéné s de formule NaxCoO2 (χ1). Le système cobalt-oxygène-sodium, J. Solid State Chem. 6 (1973) 532-537.
-
[19] M. Jansen, R. Hoppe, Notiz zur Kenntnis der Oxocobaltate des Natriums, Z. Anorg. Allg. Chem. 408 (1974) 104-106.[19] M. Jansen, R. Hoppe, Notiz zur Kenntnis der Oxocobaltate des Natriums, Z. Anorg. Allg. Chem. 408 (1974) 104-106.
-
[20] I. Terasaki, Transport properties and electronic states of the thermoelectric oxide NaCo2O4, Phys. Rev. B 328 (2003) 63-67.[20] I. Terasaki, Transport properties and electronic states of the thermoelectric oxide NaCo2O4, Phys. Rev. B 328 (2003) 63-67.
-
[21] L. Athouël, F. Moser, R. Dugas, et al., Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, J. Phys. Chem. C 112 (2008) 7270-7277.[21] L. Athouël, F. Moser, R. Dugas, et al., Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte, J. Phys. Chem. C 112 (2008) 7270-7277.
-
[22] A. Caballero, L. Hernán, J. Morales, L. Sánchez, J. Santos, Ion-exchange properties of P2-NaxMnO2: evidence of the retention of the layer structure based on chemical reactivity data and electrochemical measurements of lithium cells, J. Solid State Chem. 174 (2003) 365-371.[22] A. Caballero, L. Hernán, J. Morales, L. Sánchez, J. Santos, Ion-exchange properties of P2-NaxMnO2: evidence of the retention of the layer structure based on chemical reactivity data and electrochemical measurements of lithium cells, J. Solid State Chem. 174 (2003) 365-371.
-
[23] O.A. Shlyakhtin, A.M. Skundin, S.J. Yoon, Y.J. Oh, Ni-Mn hydroxides as new high power electrode materials for supercapacitor applications, Mater. Lett. 63 (2009) 109-112.[23] O.A. Shlyakhtin, A.M. Skundin, S.J. Yoon, Y.J. Oh, Ni-Mn hydroxides as new high power electrode materials for supercapacitor applications, Mater. Lett. 63 (2009) 109-112.
-
[24] C. Portet, P.L. Taberna, P. Simon, C. Laberty-Robert, Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochim. Acta 49 (2004) 905-912.[24] C. Portet, P.L. Taberna, P. Simon, C. Laberty-Robert, Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications, Electrochim. Acta 49 (2004) 905-912.
-
[25] X. Zhang, P. Yu, H.T. Zhang, et al., Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, Electrochim. Acta 89 (2013) 523-529.[25] X. Zhang, P. Yu, H.T. Zhang, et al., Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, Electrochim. Acta 89 (2013) 523-529.
-
[26] Z.C. Li, H.L. Bao, X.Y. Miao, X.H. Chen, A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties, J. Colloid Interf. Sci. 357 (2011) 286-291.[26] Z.C. Li, H.L. Bao, X.Y. Miao, X.H. Chen, A facile route to growth of γ-MnOOH nanorods and electrochemical capacitance properties, J. Colloid Interf. Sci. 357 (2011) 286-291.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1413
- HTML全文浏览量: 28

下载: