Determination of silver ion based on the redshift of emission wavelength of quantum dots functionalized with rhodanine

Li Chen Qin Zhao Xiao-Yan Zhang Guan-Hong Tao

Citation:  Li Chen, Qin Zhao, Xiao-Yan Zhang, Guan-Hong Tao. Determination of silver ion based on the redshift of emission wavelength of quantum dots functionalized with rhodanine[J]. Chinese Chemical Letters, 2014, 25(2): 261-264. shu

Determination of silver ion based on the redshift of emission wavelength of quantum dots functionalized with rhodanine

    通讯作者: Guan-Hong Tao,
摘要: A simple and selective method for the determination of silver ions was developed by utilizing the redshift in emission wavelength of the core-shell CdSe/CdS quantum dots (QDs) functionalized with rhodanine upon the addition of Ag+. A linear relationship was observed between the shift and the increase in concentration of Ag+ in the range of 0.0125-12.5 μmol/L. Themechanism of the red-shift was investigated and suggested that the coordination between Ag+ and rhodanine on the QDs surface caused an increase of particle size, which resulted in the red-shift of the QDs' emission wavelength. A detection limit of 2 nmol/L was achieved. The developed method showed superior selectivity and was successfully applied to the determination of silver in environmental samples.

English

  • 
    1. [1] C.W. Chan, J. Maxwell, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotech. 13 (2002) 40-46.[1] C.W. Chan, J. Maxwell, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotech. 13 (2002) 40-46.

    2. [2] R.H. Yang, W.H. Chan, K.A. Li, A ratiometric fluorescent sensor for AgI with high selectivity and sensitivity, J. Am. Chem. Soc. 125 (2003) 2884-2885.[2] R.H. Yang, W.H. Chan, K.A. Li, A ratiometric fluorescent sensor for AgI with high selectivity and sensitivity, J. Am. Chem. Soc. 125 (2003) 2884-2885.

    3. [3] T. Ye, S. Lu, J. Wang, J. Lu, One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol, Chin. Chem. Lett. 22 (2011) 1253-1256.[3] T. Ye, S. Lu, J. Wang, J. Lu, One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol, Chin. Chem. Lett. 22 (2011) 1253-1256.

    4. [4] Y. Bao, J. Li, J. Zhu, Probing cytotoxicity of CdSe and CdSe/CdS quantum dots, Chin. Chem. Lett. 22 (2011) 843-846.[4] Y. Bao, J. Li, J. Zhu, Probing cytotoxicity of CdSe and CdSe/CdS quantum dots, Chin. Chem. Lett. 22 (2011) 843-846.

    5. [5] Y. Chen, Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Anal. Chem. 74 (2002) 5132-5138.[5] Y. Chen, Z. Rosenzweig, Luminescent CdS quantum dots as selective ion probes, Anal. Chem. 74 (2002) 5132-5138.

    6. [6] Y. Shang, F. Wu, Functionalized manganese-doped zinc sulfide quantum dotbased fluorescent probe for zinc ion, Microchim. Acta 177 (2012) 333-339.[6] Y. Shang, F. Wu, Functionalized manganese-doped zinc sulfide quantum dotbased fluorescent probe for zinc ion, Microchim. Acta 177 (2012) 333-339.

    7. [7] M. Koneswaran, R. Narayanaswamy, L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion, Sensor Actuat. B 139 (2009) 104-109.[7] M. Koneswaran, R. Narayanaswamy, L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion, Sensor Actuat. B 139 (2009) 104-109.

    8. [8] Y.S. Xia, C.Q. Zhu, Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ), Talanta 75 (2008) 215-221.[8] Y.S. Xia, C.Q. Zhu, Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ), Talanta 75 (2008) 215-221.

    9. [9] J. Wang, X. Zhou, H. Ma, G. Tao, Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection, Spectrochim. Acta A 81 (2011) 178-183.[9] J. Wang, X. Zhou, H. Ma, G. Tao, Diethyldithiocarbamate functionalized CdSe/CdS quantum dots as a fluorescent probe for copper ion detection, Spectrochim. Acta A 81 (2011) 178-183.

    10. [10] Q. Zhao, X. Rong, H. Ma, G. Tao, Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion, J. Hazard. Mater. 250 (2013) 45-52.[10] Q. Zhao, X. Rong, H. Ma, G. Tao, Dithizone functionalized CdSe/CdS quantum dots as turn-on fluorescent probe for ultrasensitive detection of lead ion, J. Hazard. Mater. 250 (2013) 45-52.

    11. [11] Q. Zhao, X. Rong, L. Chen, H. Ma, G. Tao, Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor, Talanta 114 (2013) 110-116.[11] Q. Zhao, X. Rong, L. Chen, H. Ma, G. Tao, Layer-by-layer self-assembly xylenol orange functionalized CdSe/CdS quantum dots as a turn-on fluorescence lead ion sensor, Talanta 114 (2013) 110-116.

    12. [12] X.L. Rong, Q. Zhao, G.H. Tao, Aqueous synthesis of CdSe and CdSe/CdS quantum dots with controllable introduction of Se and S sources, Chin. Chem. Lett. 23 (2012) 961-964.[12] X.L. Rong, Q. Zhao, G.H. Tao, Aqueous synthesis of CdSe and CdSe/CdS quantum dots with controllable introduction of Se and S sources, Chin. Chem. Lett. 23 (2012) 961-964.

    13. [13] S. Lai, X. Chang, J. Mao, Y. Zhai, N. Lian, H. Zheng, Determination of silver ion with cadmium sulfide quantum dot s modified by bismuthiol Ⅱ as fluorescence probe, Ann. Chim. 97 (2007) 109-121.[13] S. Lai, X. Chang, J. Mao, Y. Zhai, N. Lian, H. Zheng, Determination of silver ion with cadmium sulfide quantum dot s modified by bismuthiol Ⅱ as fluorescence probe, Ann. Chim. 97 (2007) 109-121.

    14. [14] W. Tan, N. Huang, Y. Zhang, Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications, J. Colloid. Interface Sci. 310 (2007) 464-470.[14] W. Tan, N. Huang, Y. Zhang, Ultrafine biocompatible chitosan nanoparticles encapsulating multi-coloured quantum dots for bioapplications, J. Colloid. Interface Sci. 310 (2007) 464-470.

    15. [15] Y. Xia, C. Cao, C. Zhu, Two distinct photoluminescence responses of CdTe quantum dots to Ag (I), J. Lumin. 128 (2008) 166-172.[15] Y. Xia, C. Cao, C. Zhu, Two distinct photoluminescence responses of CdTe quantum dots to Ag (I), J. Lumin. 128 (2008) 166-172.

    16. [16] L. Manna, E.C. Scher, A.P. Alivisatos, Epotaxial growth and photochemical annealing of graded CdS/ZnS shell on colloidal CdSe nanorods, J. Am. Chem. Soc. 124 (2002) 7136-7145.[16] L. Manna, E.C. Scher, A.P. Alivisatos, Epotaxial growth and photochemical annealing of graded CdS/ZnS shell on colloidal CdSe nanorods, J. Am. Chem. Soc. 124 (2002) 7136-7145.

    17. [17] Z. Shang, Y. Wang, W. Jin, Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (Ⅱ) and iodide in aqueous solution, Talanta 78 (2009) 364-369.[17] Z. Shang, Y. Wang, W. Jin, Triethanolamine-capped CdSe quantum dots as fluorescent sensors for reciprocal recognition of mercury (Ⅱ) and iodide in aqueous solution, Talanta 78 (2009) 364-369.

    18. [18] R.E. Godoy, A.G. Perez, Spectrophotometric determination of trace amounts of silver with rhodanine, Analyst 111 (1986) 1297-1299.[18] R.E. Godoy, A.G. Perez, Spectrophotometric determination of trace amounts of silver with rhodanine, Analyst 111 (1986) 1297-1299.

    19. [19] C. Yuan, Y. Zhang, Y. Zhang, Determination of trace silver in environmental samples by room temperature ionic liquid-based preconcentration and flame atomic absorption spectrometry, Microchim. Acta 175 (2011) 333-339.[19] C. Yuan, Y. Zhang, Y. Zhang, Determination of trace silver in environmental samples by room temperature ionic liquid-based preconcentration and flame atomic absorption spectrometry, Microchim. Acta 175 (2011) 333-339.

    20. [20] P.P. Ingole, R.M. Abhyankar, B.L.V. Prasad, S.K. Haram, Citrate-capped quantum dots of CdSe for the selective photometric detection of silver ions in aqueous solutions, Mater. Sci. Eng. B 168 (2010) 60-65.[20] P.P. Ingole, R.M. Abhyankar, B.L.V. Prasad, S.K. Haram, Citrate-capped quantum dots of CdSe for the selective photometric detection of silver ions in aqueous solutions, Mater. Sci. Eng. B 168 (2010) 60-65.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1278
  • HTML全文浏览量:  23
文章相关
  • 收稿日期:  2013-08-07
  • 网络出版日期:  2013-09-26
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章