The preparation and performance of visible-light-sensitized luminescent nanoparticles based on europium complex

Fu-Min Xue Ming-Hui Liang Zhen-Hua Wang Ling-Yu Luan Fu-Wei Li Yan Cheng Guang-Sheng Shao

Citation:  Fu-Min Xue, Ming-Hui Liang, Zhen-Hua Wang, Ling-Yu Luan, Fu-Wei Li, Yan Cheng, Guang-Sheng Shao. The preparation and performance of visible-light-sensitized luminescent nanoparticles based on europium complex[J]. Chinese Chemical Letters, 2014, 25(2): 247-252. shu

The preparation and performance of visible-light-sensitized luminescent nanoparticles based on europium complex

    通讯作者: Fu-Min Xue,
  • 基金项目:

    ing Young Scientist Award (No. BS2011SW031). (No. BS2011SW031)

摘要: Long-wavelength-sensitized luminescent materials are desired for bio-detection. In this paper, we prepared a new kind of luminescent europium nanoparticles by a co-precipitation-condensation method. The luminescent europiumcomplex Eu(tta)3·bpt (tta = thenoyltrifluoroacetonate; bpt = 2-(N,N-di- ethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine) was used as the active material, being encapsulated in the nanoparticles formed from 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTS) and poly(styrene-co-methyl methacrylate) [P(ST-co-MMA)]. The prepared nanoparticles not only can be well dispersed in water but also were of high photostability. Importantly, the nanoparticles displayed maximal excitation wavelength at 425 nm as well as an extended excitation wavelength up to 480 nm and a quantum yield for Eu3+ luminescence of 0.22 (λex = 425 nm, room temperature).

English

  • 
    1. [1] T. Soukka, H. Härmä, J. Paukkunen, T. Lövgren, Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle- antibody bioconjugates, Anal. Chem. 73 (2001) 2254-2260.[1] T. Soukka, H. Härmä, J. Paukkunen, T. Lövgren, Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle- antibody bioconjugates, Anal. Chem. 73 (2001) 2254-2260.

    2. [2] M.Q. Tan, G.L. Wang, X.D. Hai, Z.Q. Ye, J.L. Yuan, Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications, J. Mater. Chem. 14 (2004) 2896-2901.[2] M.Q. Tan, G.L. Wang, X.D. Hai, Z.Q. Ye, J.L. Yuan, Development of functionalized fluorescent europium nanoparticles for biolabeling and time-resolved fluorometric applications, J. Mater. Chem. 14 (2004) 2896-2901.

    3. [3] J.L. Yuan, K. Matsumoto, H. Kimura, A new tetradentate β-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay, Anal. Chem. 70 (1998) 596-601.[3] J.L. Yuan, K. Matsumoto, H. Kimura, A new tetradentate β-diketonate-europium chelate that can be covalently bound to proteins for time-resolved fluoroimmunoassay, Anal. Chem. 70 (1998) 596-601.

    4. [4] I. Hemmilä, V. Laitala, Progress in lanthanides as luminescent probes, J. Fluoresc. 15 (2005) 529-542.[4] I. Hemmilä, V. Laitala, Progress in lanthanides as luminescent probes, J. Fluoresc. 15 (2005) 529-542.

    5. [5] J.L. Yuan, G.L. Wang, Lanthanide-based luminescence probes and time-resolved luminescence bioassays, Trends Anal. Chem. 25 (2006) 490-500.[5] J.L. Yuan, G.L. Wang, Lanthanide-based luminescence probes and time-resolved luminescence bioassays, Trends Anal. Chem. 25 (2006) 490-500.

    6. [6] Y. Chen, Y.M. Chi, H.M. Wen, Z.H. Lu, Sensitized luminescent terbium nanoparticles: preparation and time-resolved fluorescence assay for DNA, Anal. Chem. 79 (2007) 960-965.[6] Y. Chen, Y.M. Chi, H.M. Wen, Z.H. Lu, Sensitized luminescent terbium nanoparticles: preparation and time-resolved fluorescence assay for DNA, Anal. Chem. 79 (2007) 960-965.

    7. [7] Y. Chen, Z.H. Lu, Dye sensitized luminescent europium nanoparticles and its timeresolved fluorometric assay for DNA, Anal. Chim. Acta 587 (2007) 180-186.[7] Y. Chen, Z.H. Lu, Dye sensitized luminescent europium nanoparticles and its timeresolved fluorometric assay for DNA, Anal. Chim. Acta 587 (2007) 180-186.

    8. [8] K. Hashino, K. Ikawa, M. Ito, et al., Application of a fluorescent lanthanide chelate label on a solid support device for detecting DNA variation with ligation-based assay, Anal. Biochem. 364 (2007) 89-91.[8] K. Hashino, K. Ikawa, M. Ito, et al., Application of a fluorescent lanthanide chelate label on a solid support device for detecting DNA variation with ligation-based assay, Anal. Biochem. 364 (2007) 89-91.

    9. [9] A. Son, A. Dhirapong, D.K. Dosev, et al., Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles, Anal. Bioanal. Chem. 390 (2008) 1829-1835.[9] A. Son, A. Dhirapong, D.K. Dosev, et al., Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles, Anal. Bioanal. Chem. 390 (2008) 1829-1835.

    10. [10] A.M. Nonat, S.J. Quinn, T. Gunnlaugsson, Mixed f-d coordination complexes as dual visible- and near-infrared-emitting probes for targeting DNA, Inorg. Chem. 48 (2009) 4646-4648.[10] A.M. Nonat, S.J. Quinn, T. Gunnlaugsson, Mixed f-d coordination complexes as dual visible- and near-infrared-emitting probes for targeting DNA, Inorg. Chem. 48 (2009) 4646-4648.

    11. [11] D.A. Heller, E.S. Jeng, T.K. Yeung, et al., Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes, Science 311 (2006) 508-511.[11] D.A. Heller, E.S. Jeng, T.K. Yeung, et al., Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes, Science 311 (2006) 508-511.

    12. [12] A. Bodi, K.E. Borbas, J.I. Bruce, Near IR-emitting DNA-probes exploiting stepwise energy transfer processes, Dalton Trans. 38 (2007) 4352-4358.[12] A. Bodi, K.E. Borbas, J.I. Bruce, Near IR-emitting DNA-probes exploiting stepwise energy transfer processes, Dalton Trans. 38 (2007) 4352-4358.

    13. [13] A. D'Alé o, G. Pompidor, B. Elena, et al., Two-photon microscopy and spectroscopy of lanthanide bioprobes, ChemPhysChem 8 (2007) 2125-2132.[13] A. D'Alé o, G. Pompidor, B. Elena, et al., Two-photon microscopy and spectroscopy of lanthanide bioprobes, ChemPhysChem 8 (2007) 2125-2132.

    14. [14] A. Picot, A. D'Alé o, P.L. Baldeck, et al., Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy, J. Am. Chem. Soc. 130 (2008) 1532-1533.[14] A. Picot, A. D'Alé o, P.L. Baldeck, et al., Long-lived two-photon excited luminescence of water-soluble europium complex: applications in biological imaging using two-photon scanning microscopy, J. Am. Chem. Soc. 130 (2008) 1532-1533.

    15. [15] G.L. Law, K.L. Wong, C.W.Y. Man, et al., Emissive terbium probe for multiphoton in vitro cell imaging, J. Am. Chem. Soc. 130 (2008) 3714-3715.[15] G.L. Law, K.L. Wong, C.W.Y. Man, et al., Emissive terbium probe for multiphoton in vitro cell imaging, J. Am. Chem. Soc. 130 (2008) 3714-3715.

    16. [16] G.L. Law, K.L.Wong, C.W.Y.Man, S.W. Tsao,W.T.Wong, A two-photon europium complex as specific endoplasmic reticulum probe, J. Biophoton. 2 (2009) 718-724.[16] G.L. Law, K.L.Wong, C.W.Y.Man, S.W. Tsao,W.T.Wong, A two-photon europium complex as specific endoplasmic reticulum probe, J. Biophoton. 2 (2009) 718-724.

    17. [17] B. Song, G.L. Wang, M.Q. Tan, J.L.A. Yuan, Europium(Ⅲ) complex as an efficient singlet oxygen luminescence probe, J. Am. Chem. Soc. 128 (2006) 13442-13450.[17] B. Song, G.L. Wang, M.Q. Tan, J.L.A. Yuan, Europium(Ⅲ) complex as an efficient singlet oxygen luminescence probe, J. Am. Chem. Soc. 128 (2006) 13442-13450.

    18. [18] J.C.G. Bünzli, A.S. Chauvin, C.D.B. Vandevyver, B. Song, S. Comby, Lanthanide bimetallic helicates for in vitro imaging and sensing, Ann. N. Y. Acad. Sci. 1130 (2008) 97-105.[18] J.C.G. Bünzli, A.S. Chauvin, C.D.B. Vandevyver, B. Song, S. Comby, Lanthanide bimetallic helicates for in vitro imaging and sensing, Ann. N. Y. Acad. Sci. 1130 (2008) 97-105.

    19. [19] B.Y. Wu, H.F. Wang, J.T. Chen, X.P. Yan, Fluorescence resonance energy transfer inhibition assay for a-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles, J. Am. Chem. Soc. 133 (2011) 686-688.[19] B.Y. Wu, H.F. Wang, J.T. Chen, X.P. Yan, Fluorescence resonance energy transfer inhibition assay for a-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles, J. Am. Chem. Soc. 133 (2011) 686-688.

    20. [20] S.W. Yang, H. Li, Assaying dynamic cell-cell junctional communication using noninvasive and quantitative fluorescence imaging techniques: LAMP and infrared- LAMP, Nat. Protoc. 4 (2009) 94-101.[20] S.W. Yang, H. Li, Assaying dynamic cell-cell junctional communication using noninvasive and quantitative fluorescence imaging techniques: LAMP and infrared- LAMP, Nat. Protoc. 4 (2009) 94-101.

    21. [21] J.C.G. Bünzli, A.S. Chauvin, H.K. Kim, E. Deiters, S.V. Eliseeva, Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: role of the radiative lifetime, Coord. Chem. Rev. 254 (2010) 2623-2633.[21] J.C.G. Bünzli, A.S. Chauvin, H.K. Kim, E. Deiters, S.V. Eliseeva, Lanthanide luminescence efficiency in eight- and nine-coordinate complexes: role of the radiative lifetime, Coord. Chem. Rev. 254 (2010) 2623-2633.

    22. [22] J.C.G. Bünzli, S. Comby, A.S. Chauvin, C.D.B. Vandevyver, New opportunities for lanthanide luminescence, J. Rare Earths 25 (2007) 257-274.[22] J.C.G. Bünzli, S. Comby, A.S. Chauvin, C.D.B. Vandevyver, New opportunities for lanthanide luminescence, J. Rare Earths 25 (2007) 257-274.

    23. [23] J.L. Zhang, B.W. Chen, X. Luo, K. Du, Eu(Ⅲ) complex-doped PMMA having fast radiation rate and high emission quantum efficiency, Chin. Chem. Lett. 23 (2012) 945-948.[23] J.L. Zhang, B.W. Chen, X. Luo, K. Du, Eu(Ⅲ) complex-doped PMMA having fast radiation rate and high emission quantum efficiency, Chin. Chem. Lett. 23 (2012) 945-948.

    24. [24] H.Q. Chen, J. Xu, F. Yuan, et al., A "turn off" luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors, Chin. Chem. Lett. 24 (2013) 79-81.[24] H.Q. Chen, J. Xu, F. Yuan, et al., A "turn off" luminescence resonance energy transfer aptamer sensor based on near-infrared upconverting NaYF4:Yb3+, Tm3+ nanoparticles as donors and gold nanorods as acceptors, Chin. Chem. Lett. 24 (2013) 79-81.

    25. [25] J.C.G. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev. 34 (2005) 1048-1077.[25] J.C.G. Bünzli, C. Piguet, Taking advantage of luminescent lanthanide ions, Chem. Soc. Rev. 34 (2005) 1048-1077.

    26. [26] G.S. He, L.S. Tan, Q. Zheng, P.N. Prasad, Multi-photon absorbing materials: molecular designs, syntheses, characterizations, and applications, Chem. Rev. 108 (2008) 1245-1330.[26] G.S. He, L.S. Tan, Q. Zheng, P.N. Prasad, Multi-photon absorbing materials: molecular designs, syntheses, characterizations, and applications, Chem. Rev. 108 (2008) 1245-1330.

    27. [27] C. Yang, L.M. Fu, Y. Wang, et al., A highly luminescent europium complex showing visible-light-sensitized red emission: direct observation of the singlet pathway, Angew. Chem. Int. Ed. 43 (2004) 5010-5013.[27] C. Yang, L.M. Fu, Y. Wang, et al., A highly luminescent europium complex showing visible-light-sensitized red emission: direct observation of the singlet pathway, Angew. Chem. Int. Ed. 43 (2004) 5010-5013.

    28. [28] L.M. Fu, X.F. Wen, X.C. Ai, et al., Efficient two-photon-sensitized luminescence of a europium(Ⅲ) complex, Angew. Chem. Int. Ed. 44 (2005) 747-750.[28] L.M. Fu, X.F. Wen, X.C. Ai, et al., Efficient two-photon-sensitized luminescence of a europium(Ⅲ) complex, Angew. Chem. Int. Ed. 44 (2005) 747-750.

    29. [29] R. Hao, M.Y. Li, Y. Wang, et al., A europium complex with excellent two-photonsensitized luminescence properties, Adv. Funct. Mater. 17 (2007) 3663-3669.[29] R. Hao, M.Y. Li, Y. Wang, et al., A europium complex with excellent two-photonsensitized luminescence properties, Adv. Funct. Mater. 17 (2007) 3663-3669.

    30. [30] F.M. Xue, Y. Ma, L.M. Fu, et al., A europium complex with enhanced longwavelength sensitized luminescent properties, Phys. Chem. Chem. Phys. 12 (2010) 3195-3202.[30] F.M. Xue, Y. Ma, L.M. Fu, et al., A europium complex with enhanced longwavelength sensitized luminescent properties, Phys. Chem. Chem. Phys. 12 (2010) 3195-3202.

    31. [31] J.C.G. Bünzli, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev. 110 (2010) 2722-2729.[31] J.C.G. Bünzli, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev. 110 (2010) 2722-2729.

    32. [32] V. Divya, V. Sankar, K.G. Raghu, et al., A mitochondria-specific visible-light sensitized europium β-diketonate complex with red emission, Dalton Trans. 42 (2013) 12317-12323.[32] V. Divya, V. Sankar, K.G. Raghu, et al., A mitochondria-specific visible-light sensitized europium β-diketonate complex with red emission, Dalton Trans. 42 (2013) 12317-12323.

    33. [33] V. Divya, M.L.P. Reddy, Visible-light excited red emitting luminescent nanocomposites derived from Eu3+-phenathrene-based fluorinated β-diketonate complexes and multi-walled carbon nanotubes, J. Mater. Chem. C 1 (2013) 160-170.[33] V. Divya, M.L.P. Reddy, Visible-light excited red emitting luminescent nanocomposites derived from Eu3+-phenathrene-based fluorinated β-diketonate complexes and multi-walled carbon nanotubes, J. Mater. Chem. C 1 (2013) 160-170.

    34. [34] J. Xu, Z.H. Sun, L. Jia, et al., Visible light sensitized attapulgite-based lanthanide composites: microstructure, photophysical behaviour and biological application, Dalton Trans. 40 (2011) 12909-12916.[34] J. Xu, Z.H. Sun, L. Jia, et al., Visible light sensitized attapulgite-based lanthanide composites: microstructure, photophysical behaviour and biological application, Dalton Trans. 40 (2011) 12909-12916.

    35. [35] G.S. Shao, R.C. Han, Y. Ma, et al., Bionanoprobes with excellent two-photonsensitized Eu3+ luminescence properties for live cell imaging, Chem. Eur. J. 16 (2010) 8647-8651.[35] G.S. Shao, R.C. Han, Y. Ma, et al., Bionanoprobes with excellent two-photonsensitized Eu3+ luminescence properties for live cell imaging, Chem. Eur. J. 16 (2010) 8647-8651.

    36. [36] G.S. Shao, F.M. Xue, R.C. Han, M.X. Tang, Y. Wang, Synthesis and characterization of europium complex nanoparticles with long-wavelength sensitized luminescence, Acta Phys. Chim. Sin. 26 (2010) 2031-2036.[36] G.S. Shao, F.M. Xue, R.C. Han, M.X. Tang, Y. Wang, Synthesis and characterization of europium complex nanoparticles with long-wavelength sensitized luminescence, Acta Phys. Chim. Sin. 26 (2010) 2031-2036.

    37. [37] X.Y. Fu, G.S. Shao, R.C. Han, et al., Nanoprobes with enhanced two-photonsensitized Eu3+ luminescence properties for live cell imaging, Acta Phys. Chim. Sin. 28 (2012) 2480-2486.[37] X.Y. Fu, G.S. Shao, R.C. Han, et al., Nanoprobes with enhanced two-photonsensitized Eu3+ luminescence properties for live cell imaging, Acta Phys. Chim. Sin. 28 (2012) 2480-2486.

    38. [38] J. Wu, G.L. Wang, D.Y. Jin, et al., Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging, Chem. Commun. 3 (2008) 365-367.[38] J. Wu, G.L. Wang, D.Y. Jin, et al., Luminescent europium nanoparticles with a wide excitation range from UV to visible light for biolabeling and time-gated luminescence bioimaging, Chem. Commun. 3 (2008) 365-367.

    39. [39] J. Wu, Z.Q. Ye, G.L. Wang, et al., Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging, J. Mater. Chem. 19 (2009) 1258-1264.[39] J. Wu, Z.Q. Ye, G.L. Wang, et al., Visible-light-sensitized highly luminescent europium nanoparticles: preparation and application for time-gated luminescence bioimaging, J. Mater. Chem. 19 (2009) 1258-1264.

    40. [40] L.N. Jiang, J. Wu, G.L. Wang, et al., Development of a visible-light-sensitized europium complex for time-resolved fluorometric application, Anal. Chem. 82 (2010) 2529-2535.[40] L.N. Jiang, J. Wu, G.L. Wang, et al., Development of a visible-light-sensitized europium complex for time-resolved fluorometric application, Anal. Chem. 82 (2010) 2529-2535.

    41. [41] L. Tian, Z.C. Dai, L. Zhang, et al., Preparation and time-gated luminescence bioimaging applications of long wavelength-excited silica-encapsulated europium nanoparticles, Nanoscale 4 (2012) 3551-3557.[41] L. Tian, Z.C. Dai, L. Zhang, et al., Preparation and time-gated luminescence bioimaging applications of long wavelength-excited silica-encapsulated europium nanoparticles, Nanoscale 4 (2012) 3551-3557.

    42. [42] Y. Wang, X.Y. Fu, G.S. Shao, Photoluminescent nanoparticle, preparation, and application, China, CN 200910203407.3 [P] 2010.[42] Y. Wang, X.Y. Fu, G.S. Shao, Photoluminescent nanoparticle, preparation, and application, China, CN 200910203407.3 [P] 2010.

    43. [43] H.S. Peng, M.I.J. Stich, J.B. Yu, et al., Luminescent europium(Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range, Adv. Mater. 22 (2010) 716-719.[43] H.S. Peng, M.I.J. Stich, J.B. Yu, et al., Luminescent europium(Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range, Adv. Mater. 22 (2010) 716-719.

    44. [44] J.N. Demas, G.A. Crosby, The measurement of photoluminescence quantum yields, J. Phys. Chem. 75 (1971) 991-1024.[44] J.N. Demas, G.A. Crosby, The measurement of photoluminescence quantum yields, J. Phys. Chem. 75 (1971) 991-1024.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1252
  • HTML全文浏览量:  15
文章相关
  • 收稿日期:  2013-09-30
  • 网络出版日期:  2013-10-15
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章