Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives

Peng-Xia Liang Dong Wang Zong-Cheng Miao Zhao-Kui Jin Huai Yang Zhou Yang

Citation:  Peng-Xia Liang, Dong Wang, Zong-Cheng Miao, Zhao-Kui Jin, Huai Yang, Zhou Yang. Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives[J]. Chinese Chemical Letters, 2014, 25(2): 237-242. shu

Spectral and self-assembly properties of a series of asymmetrical pyrene derivatives

    通讯作者: Dong Wang,
    Zhou Yang,
  • 基金项目:

    This work was partially supported by Beijing Natural Science Foundation (No. 2122042) (No. 2122042)

    the Fundamental Research Funds for the Central Universities (No. FRF-TP-09-010B)  (No. FRF-TP-09-010B)

    the National Natural Science Fund for Distinguished Young Scholar (No. 51025313). (No. 51025313)

摘要: A series of pyrene derivatives with different asymmetrical substituents were successfully synthesized and characterized. The geometrical electronic structures of the asymmetrical pyrene derivatives were performed by density functional theory (DFT) calculations. The results of photophysical spectra and electrochemical analysis indicated that the optical or electric properties of the pyrene derivatives could be tuned by adjust the π-conjugation lengths of the substituents. Furthermore, through a phase exchange self-assembly method, the highly organized morphologies were observed by SEM.

English

  • 
    1. [1] K.R.J. Thomas, J.T. Lin, Y.T. Tao, et al., Light-emitting carbazole derivatives: potential electroluminescent materials, J. Am. Chem. Soc. 123 (2001) 9404-9411.[1] K.R.J. Thomas, J.T. Lin, Y.T. Tao, et al., Light-emitting carbazole derivatives: potential electroluminescent materials, J. Am. Chem. Soc. 123 (2001) 9404-9411.

    2. [2] L. Schmidt-Mende, A. Fechtenkätter, K. Müllen, et al., Efficient organic photovoltaics from soluble discotic liquid crystalline materials, Physica E 14 (2002) 263-267.[2] L. Schmidt-Mende, A. Fechtenkätter, K. Müllen, et al., Efficient organic photovoltaics from soluble discotic liquid crystalline materials, Physica E 14 (2002) 263-267.

    3. [3] C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics, Adv. Mater. 14 (2002) 99-117.[3] C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic thin film transistors for large area electronics, Adv. Mater. 14 (2002) 99-117.

    4. [4] B. Esembeson, M.L. Scimeca, T. Michinobu, et al., A high-optical quality supramolecular assembly for third-order integrated nonlinear optics, Adv. Mater. 20 (2008) 4584-4587.[4] B. Esembeson, M.L. Scimeca, T. Michinobu, et al., A high-optical quality supramolecular assembly for third-order integrated nonlinear optics, Adv. Mater. 20 (2008) 4584-4587.

    5. [5] A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-sensitized solar cells with cobalt (II/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629-634.[5] A. Yella, H.W. Lee, H.N. Tsao, et al., Porphyrin-sensitized solar cells with cobalt (II/Ⅲ)-based redox electrolyte exceed 12 percent efficiency, Science 334 (2011) 629-634.

    6. [6] S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials, Chem. Rev. 100 (2000) 1777-1788.[6] S. Kawata, Y. Kawata, Three-dimensional optical data storage using photochromic materials, Chem. Rev. 100 (2000) 1777-1788.

    7. [7] I.D. Tevis, L.C. Palmer, D.J. Herman, Self-assembly and orientation of hydrogenbonded oligothiophene polymorphs at liquid-membrane-liquid interfaces, J. Am. Chem. Soc. 133 (2011) 16486-16494.[7] I.D. Tevis, L.C. Palmer, D.J. Herman, Self-assembly and orientation of hydrogenbonded oligothiophene polymorphs at liquid-membrane-liquid interfaces, J. Am. Chem. Soc. 133 (2011) 16486-16494.

    8. [8] (a) X.J. Zhang, X.H. Zhang, W.S. Shi, et al., Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties, J. Phys. Chem. B 109 (2005) 18777-18780; (b) Z.F. Duan, Z.G. Yang, D.J. Liu, et al., Synthesis of two mono-deoxy β-cyclodextrin derivatives as useful tools for confirming DIBAL-H promoted bis-de-O-methylation mechanism, Chin. Chem. Lett. 22 (2011) 819-822; (c) X.M. Wang, H. Yan, X.L. Feng, et al., 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (Ⅱ) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.[8] (a) X.J. Zhang, X.H. Zhang, W.S. Shi, et al., Morphology-controllable synthesis of pyrene nanostructures and its morphology dependence of optical properties, J. Phys. Chem. B 109 (2005) 18777-18780; (b) Z.F. Duan, Z.G. Yang, D.J. Liu, et al., Synthesis of two mono-deoxy β-cyclodextrin derivatives as useful tools for confirming DIBAL-H promoted bis-de-O-methylation mechanism, Chin. Chem. Lett. 22 (2011) 819-822; (c) X.M. Wang, H. Yan, X.L. Feng, et al., 1-Pyrenecarboxaldehyde thiosemicarbazone: a novel fluorescent molecular sensor towards mercury (Ⅱ) ion, Chin. Chem. Lett. 21 (2010) 1124-1128.

    9. [9] Y. Wang, H.M. Wang, Y.Q. Liu, et al., 1-Imino nitroxide pyrene for high performance organic field-effect transistors with low operating voltage, J. Am. Chem. Soc. 128 (2006) 13058-13059.[9] Y. Wang, H.M. Wang, Y.Q. Liu, et al., 1-Imino nitroxide pyrene for high performance organic field-effect transistors with low operating voltage, J. Am. Chem. Soc. 128 (2006) 13058-13059.

    10. [10] W.L. Jia, T.M. Cormick, Q.D. Liu, et al., Diarylamino functionalized pyrene derivatives for use in blue OLEDs and complex formation, J. Mater. Chem. 14 (2004) 3344-3350.[10] W.L. Jia, T.M. Cormick, Q.D. Liu, et al., Diarylamino functionalized pyrene derivatives for use in blue OLEDs and complex formation, J. Mater. Chem. 14 (2004) 3344-3350.

    11. [11] (a) E.B. Namdas, A. Ruseckas, I.D. Samuel, et al., Photophysics of fac-tris(2- phenylpyridine) iridium(Ⅲ) cored electroluminescent dendrimers in solution and films, J. Phys. Chem. B 108 (2004) 1570-1577; (b) C.C. Kwok, M.S. Wong, Synthesis and light-emitting properties of difunctional dendritic distyrylstilbenes, Macromolecules 34 (2001) 6821-6830.[11] (a) E.B. Namdas, A. Ruseckas, I.D. Samuel, et al., Photophysics of fac-tris(2- phenylpyridine) iridium(Ⅲ) cored electroluminescent dendrimers in solution and films, J. Phys. Chem. B 108 (2004) 1570-1577; (b) C.C. Kwok, M.S. Wong, Synthesis and light-emitting properties of difunctional dendritic distyrylstilbenes, Macromolecules 34 (2001) 6821-6830.

    12. [12] (a) J.Y. Hu, M. Era, M.R.J. Elsegood, T. Yamato, Synthesis and photophysical properties of pyrene-based light-emitting monomers: highly pure-blue-fluorescent, cruciform-shaped architectures, Eur. J. Org. Chem. 1 (2010) 72-79; (b) H.J. Zhang, X.J. Xu, W.F. Qiu, et al., Unsymmetrical dendrimers as highly efficient light-emitting materials: synthesis, photophysics, and electroluminescence, J. Phys. Chem. C 112 (2008) 13258-13262.[12] (a) J.Y. Hu, M. Era, M.R.J. Elsegood, T. Yamato, Synthesis and photophysical properties of pyrene-based light-emitting monomers: highly pure-blue-fluorescent, cruciform-shaped architectures, Eur. J. Org. Chem. 1 (2010) 72-79; (b) H.J. Zhang, X.J. Xu, W.F. Qiu, et al., Unsymmetrical dendrimers as highly efficient light-emitting materials: synthesis, photophysics, and electroluminescence, J. Phys. Chem. C 112 (2008) 13258-13262.

    13. [13] S. Bernhardt, M. Kastler, V. Enkelmann, et al., Pyrene as chromophore and electrophore: encapsulation in a rigid polyphenylene shell, Chem. Eur. J. 12 (2006) 6117-6128.[13] S. Bernhardt, M. Kastler, V. Enkelmann, et al., Pyrene as chromophore and electrophore: encapsulation in a rigid polyphenylene shell, Chem. Eur. J. 12 (2006) 6117-6128.

    14. [14] Z.J. Zhao, S.M. Chen, J.W.Y. Lam, et al., Pyrene-substituted ethenes: aggregationenhanced excimer emission and highly efficient electroluminescence, J. Mater. Chem. 21 (2011) 7210-7216.[14] Z.J. Zhao, S.M. Chen, J.W.Y. Lam, et al., Pyrene-substituted ethenes: aggregationenhanced excimer emission and highly efficient electroluminescence, J. Mater. Chem. 21 (2011) 7210-7216.

    15. [15] D. Wang, T. Michinobu, One-step synthesis of ladder-type fused poly(benzopentalene) derivatives with tunable energy levels by variable substituents, J. Polym. Sci. Part A: Polym. Chem. 49 (2011) 72-75.[15] D. Wang, T. Michinobu, One-step synthesis of ladder-type fused poly(benzopentalene) derivatives with tunable energy levels by variable substituents, J. Polym. Sci. Part A: Polym. Chem. 49 (2011) 72-75.

    16. [16] G. Venkataramana, S. Sankararaman, Synthesis, absorption, and fluorescenceemission properties of 1,3,6,8-tetraethynylpyrene and its derivative, Eur. J. Org. Chem. (2005) 4162-4166.[16] G. Venkataramana, S. Sankararaman, Synthesis, absorption, and fluorescenceemission properties of 1,3,6,8-tetraethynylpyrene and its derivative, Eur. J. Org. Chem. (2005) 4162-4166.

    17. [17] S.Y. Chen, X.J. Xu, Y.Q. Liu, et al., New organic light-emitting materials: synthesis, thermal, photophysical, electrochemical, and electroluminescent properties, J. Phys. Chem. C 111 (2007) 1029-1031.[17] S.Y. Chen, X.J. Xu, Y.Q. Liu, et al., New organic light-emitting materials: synthesis, thermal, photophysical, electrochemical, and electroluminescent properties, J. Phys. Chem. C 111 (2007) 1029-1031.

    18. [18] M. Beinhoff, W. Weigel, M. Jurczok, et al., Synthesis and spectroscopic properties of arene-substituted pyrene derivatives as model compounds for fluorescent polarity probes, Eur. J. Org. Chem. 20 (2001) 3819-3829.[18] M. Beinhoff, W. Weigel, M. Jurczok, et al., Synthesis and spectroscopic properties of arene-substituted pyrene derivatives as model compounds for fluorescent polarity probes, Eur. J. Org. Chem. 20 (2001) 3819-3829.

    19. [19] Y.S. Kim, S.Y. Bae, K.H. Kim, et al., Highly sensitive phototransistor with crystalline microribbons from new p-extended pyrene derivative via solution-phase selfassembly, Chem. Commun. 47 (2011) 8907-8909.[19] Y.S. Kim, S.Y. Bae, K.H. Kim, et al., Highly sensitive phototransistor with crystalline microribbons from new p-extended pyrene derivative via solution-phase selfassembly, Chem. Commun. 47 (2011) 8907-8909.

    20. [20] J.D. Hartgerink, E.R. Zubarev, S.I. Stupp, et al., Supramolecular one-dimensional objects, Curr. Opin. Solid State Mater. Sci. 5 (2001) 355-361.[20] J.D. Hartgerink, E.R. Zubarev, S.I. Stupp, et al., Supramolecular one-dimensional objects, Curr. Opin. Solid State Mater. Sci. 5 (2001) 355-361.

    21. [21] M. Supur, Y. Yamada, M.E. El-Khouly, et al., Electron delocalization in onedimensional perylenediimide nanobelts through photoinduced electron transfer, J. Phys. Chem. C 115 (2011) 15040-15047.[21] M. Supur, Y. Yamada, M.E. El-Khouly, et al., Electron delocalization in onedimensional perylenediimide nanobelts through photoinduced electron transfer, J. Phys. Chem. C 115 (2011) 15040-15047.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1312
  • HTML全文浏览量:  17
文章相关
  • 收稿日期:  2013-08-14
  • 网络出版日期:  2013-10-08
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章