Design, synthesis and antifungal activity of carbazole derivatives
English
Design, synthesis and antifungal activity of carbazole derivatives
-
Key words:
- Carbazole
- / Antifungal activity
- / Structure-activity relationship
-
-
-
[1] M.A. Pfaller, D.J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem, Clin. Microbiol. Rev. 20 (2007) 133-163.[1] M.A. Pfaller, D.J. Diekema, Epidemiology of invasive candidiasis: a persistent public health problem, Clin. Microbiol. Rev. 20 (2007) 133-163.
-
[2] L. Ostrosky-Zeichner, A. Casadevall, J.N. Galgiani, et al., An insight into the antifungal pipeline: selected new molecules and beyond, Nat. Rev. Drug Discov. 9 (2010) 719-727.[2] L. Ostrosky-Zeichner, A. Casadevall, J.N. Galgiani, et al., An insight into the antifungal pipeline: selected new molecules and beyond, Nat. Rev. Drug Discov. 9 (2010) 719-727.
-
[3] S.K. Fridkin, W.R. Jarvis, Epidemiology of nosocomial fungal infections, Clin. Microbiol. Rev. 9 (1996) 499-511.[3] S.K. Fridkin, W.R. Jarvis, Epidemiology of nosocomial fungal infections, Clin. Microbiol. Rev. 9 (1996) 499-511.
-
[4] H.A. Gallis, R.H. Drew, W.W. Pickard, Amphotericin B: 30 years of clinical experience, Rev. Infect. Dis. 12 (1990) 308-329.[4] H.A. Gallis, R.H. Drew, W.W. Pickard, Amphotericin B: 30 years of clinical experience, Rev. Infect. Dis. 12 (1990) 308-329.
-
[5] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12 (1999) 40-79.[5] D.J. Sheehan, C.A. Hitchcock, C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12 (1999) 40-79.
-
[6] D.W. Denning, Echinocandins: a new class of antifungal, J. Antimicrob. Chemother. 49 (2002) 889-891.[6] D.W. Denning, Echinocandins: a new class of antifungal, J. Antimicrob. Chemother. 49 (2002) 889-891.
-
[7] I.A. Casalinuovo, P. Di Francesco, E. Garaci, Fluconazole resistance in Candida albicans: a review of mechanisms, Eur. Rev. Med. Pharmacol. Sci. 8 (2004) 69-77.[7] I.A. Casalinuovo, P. Di Francesco, E. Garaci, Fluconazole resistance in Candida albicans: a review of mechanisms, Eur. Rev. Med. Pharmacol. Sci. 8 (2004) 69-77.
-
[8] C. Sheng, W. Zhang, New lead structures in antifungal drug discovery, Curr. Med. Chem. 18 (2011) 733-766.[8] C. Sheng, W. Zhang, New lead structures in antifungal drug discovery, Curr. Med. Chem. 18 (2011) 733-766.
-
[9] W. Wang, G. Dong, J. Gu, et al., Structure-activity relationships of tetrahydrocarbazole derivatives as antifungal lead compounds, Med. Chem. Commun. 4 (2013) 353-362.[9] W. Wang, G. Dong, J. Gu, et al., Structure-activity relationships of tetrahydrocarbazole derivatives as antifungal lead compounds, Med. Chem. Commun. 4 (2013) 353-362.
-
[10] X. Che, C. Sheng, W. Wang, et al., New azoles with potent antifungal activity: design, synthesis and molecular docking, Eur. J. Med. Chem. 44 (2009) 4218- 4226.[10] X. Che, C. Sheng, W. Wang, et al., New azoles with potent antifungal activity: design, synthesis and molecular docking, Eur. J. Med. Chem. 44 (2009) 4218- 4226.
-
[11] Z. Jiang, Y. Wang, W. Wang, et al., Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement, Eur. J. Med. Chem. 64C (2013) 16-22.[11] Z. Jiang, Y. Wang, W. Wang, et al., Discovery of highly potent triazole antifungal derivatives by heterocycle-benzene bioisosteric replacement, Eur. J. Med. Chem. 64C (2013) 16-22.
-
[12] Z. Lv, C. Sheng, Y. Zhang, et al., Synthesis and in vitro antifungal activities of new 3- substituted benzopyrone derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 7106- 7109.[12] Z. Lv, C. Sheng, Y. Zhang, et al., Synthesis and in vitro antifungal activities of new 3- substituted benzopyrone derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 7106- 7109.
-
[13] C. Sheng, X. Che, W. Wang, et al., Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism, Eur. J. Med. Chem. 46 (2011) 5276- 5282.[13] C. Sheng, X. Che, W. Wang, et al., Design and synthesis of novel triazole antifungal derivatives by structure-based bioisosterism, Eur. J. Med. Chem. 46 (2011) 5276- 5282.
-
[14] C. Sheng, X. Che, W. Wang, et al., Structure-based design, synthesis, and antifungal activity of new triazole derivatives, Chem. Biol. Drug. Des. 78 (2011) 309-313.[14] C. Sheng, X. Che, W. Wang, et al., Structure-based design, synthesis, and antifungal activity of new triazole derivatives, Chem. Biol. Drug. Des. 78 (2011) 309-313.
-
[15] C. Sheng, X. Che, W. Wang, et al., Design and synthesis of antifungal benzoheterocyclic derivatives by scaffold hopping, Eur. J. Med. Chem. 46 (2011) 1706- 1712.[15] C. Sheng, X. Che, W. Wang, et al., Design and synthesis of antifungal benzoheterocyclic derivatives by scaffold hopping, Eur. J. Med. Chem. 46 (2011) 1706- 1712.
-
[16] C. Sheng, S. Chen, H. Ji, et al., Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design, J. Mol. Model. 16 (2010) 279-284.[16] C. Sheng, S. Chen, H. Ji, et al., Evolutionary trace analysis of CYP51 family: implication for site-directed mutagenesis and novel antifungal drug design, J. Mol. Model. 16 (2010) 279-284.
-
[17] C. Sheng, H. Xu, W. Wang, et al., Design, synthesis and antifungal activity of isosteric analogues of benzoheterocyclic N-myristoyltransferase inhibitors, Eur. J. Med. Chem. 45 (2010) 3531-3540.[17] C. Sheng, H. Xu, W. Wang, et al., Design, synthesis and antifungal activity of isosteric analogues of benzoheterocyclic N-myristoyltransferase inhibitors, Eur. J. Med. Chem. 45 (2010) 3531-3540.
-
[18] C. Sheng, W. Zhang, H. Ji, et al., Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking, J. Med. Chem. 49 (2006) 2512- 2525.[18] C. Sheng, W. Zhang, H. Ji, et al., Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking, J. Med. Chem. 49 (2006) 2512- 2525.
-
[19] W. Wang, C. Sheng, X. Che, et al., Discovery of highly potent novel antifungal azoles by structure-based rational design, Bioorg. Med. Chem. Lett. 19 (2009) 5965-5969.[19] W. Wang, C. Sheng, X. Che, et al., Discovery of highly potent novel antifungal azoles by structure-based rational design, Bioorg. Med. Chem. Lett. 19 (2009) 5965-5969.
-
[20] W. Wang, C. Sheng, X. Che, et al., Design, synthesis, and antifungal activity of novel conformationally restricted triazole derivatives, Arch Pharm. (Weinheim) 342 (2009) 732-739.[20] W. Wang, C. Sheng, X. Che, et al., Design, synthesis, and antifungal activity of novel conformationally restricted triazole derivatives, Arch Pharm. (Weinheim) 342 (2009) 732-739.
-
[21] W. Wang, S. Wang, Y. Liu, et al., Novel conformationally restricted triazole derivatives with potent antifungal activity, Eur. J. Med. Chem. 45 (2010) 6020- 6026.[21] W. Wang, S. Wang, Y. Liu, et al., Novel conformationally restricted triazole derivatives with potent antifungal activity, Eur. J. Med. Chem. 45 (2010) 6020- 6026.
-
[22] Y. Xu, C. Sheng, W. Wang, et al., Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 2942-2945.[22] Y. Xu, C. Sheng, W. Wang, et al., Structure-based rational design, synthesis and antifungal activity of oxime-containing azole derivatives, Bioorg. Med. Chem. Lett. 20 (2010) 2942-2945.
-
[23] J. Yao, H. Liu, T. Zhou, et al., Total synthesis and structure-activity relationships of new echinocandin-like antifungal cyclolipohexapeptides, Eur. J. Med. Chem. 50 (2012) 196-208.[23] J. Yao, H. Liu, T. Zhou, et al., Total synthesis and structure-activity relationships of new echinocandin-like antifungal cyclolipohexapeptides, Eur. J. Med. Chem. 50 (2012) 196-208.
-
[24] M. Desroses, K. Wieckowski, M. Stevens, et al., A microwave-assisted, propylphosphonic anhydride (T3P.(R).) mediated one-pot Fischer indole synthesis, Tetrahedron Lett. 52 (2011) 4417-4420.[24] M. Desroses, K. Wieckowski, M. Stevens, et al., A microwave-assisted, propylphosphonic anhydride (T3P.(R).) mediated one-pot Fischer indole synthesis, Tetrahedron Lett. 52 (2011) 4417-4420.
-
[25] H. Gan, H. Liu, Y. Li, et al., Fabrication of polydiacetylene nanowires by associated self-polymerization and self-assembly processes for efficient field emission properties, J. Am. Chem. Soc. 127 (2005) 12452-12453.[25] H. Gan, H. Liu, Y. Li, et al., Fabrication of polydiacetylene nanowires by associated self-polymerization and self-assembly processes for efficient field emission properties, J. Am. Chem. Soc. 127 (2005) 12452-12453.
-
-
扫一扫看文章
计量
- PDF下载量: 0
- 文章访问数: 1411
- HTML全文浏览量: 45

下载: