Design, synthesis and insecticidal activity of spiro heterocycle containing neonicotinoid analogs

Nan-Yang Chen Li-Ping Ren Min-Ming Zou Zhi-Ping Xu Xu-Sheng Shao Xiao-Yong Xu Zhong Li

Citation:  Nan-Yang Chen, Li-Ping Ren, Min-Ming Zou, Zhi-Ping Xu, Xu-Sheng Shao, Xiao-Yong Xu, Zhong Li. Design, synthesis and insecticidal activity of spiro heterocycle containing neonicotinoid analogs[J]. Chinese Chemical Letters, 2014, 25(2): 197-200. shu

Design, synthesis and insecticidal activity of spiro heterocycle containing neonicotinoid analogs

    通讯作者: Xu-Sheng Shao,
    Zhong Li,
  • 基金项目:

    This work was financial supported by National Basic Research Program of China (973 Program, No. 2010CB126100) (973 Program, No. 2010CB126100)

    National High Technology Research Development Program of China (863 Program, No. 2011AA10A207) (863 Program, No. 2011AA10A207)

    Key Projects in the National Science & Technology Pillar Program (No. 2011BAE06B05) (No. 2011BAE06B05)

    National Natural Science Foundation of China (No. 21372079) (No. 21372079)

    Shanghai Education Committee (No. 12ZZ057)  (No. 12ZZ057)

摘要: Spiro heterocycles frequently occur in bioactive molecules. In the pursuit of neonicotinoids with spiro heterocycles, three types of novel neonicotinoids with spirobenzofuranone, spirooxindole or spiroacenaphythylenone framework were designed and synthesized. Insecticidal evaluation showed that some of spirobenzofuranone containing neonicotinoids exhibited moderate activity against cowpea aphid, armyworm or brown planthopper.

English

  • 
    1. [1] R. Rios, Enantioselective methodologies for the synthesis of spiro compounds, Chem. Soc. Rev. 41 (2012) 1060-1074.[1] R. Rios, Enantioselective methodologies for the synthesis of spiro compounds, Chem. Soc. Rev. 41 (2012) 1060-1074.

    2. [2] T. Jin, M. Himuro, Y. Yamamoto, Triflic acid catalyzed synthesis of spirocycles via acetylene cations, Angew. Chem. Int. Ed. 48 (2009) 5893-5896.[2] T. Jin, M. Himuro, Y. Yamamoto, Triflic acid catalyzed synthesis of spirocycles via acetylene cations, Angew. Chem. Int. Ed. 48 (2009) 5893-5896.

    3. [3] G.S. Singh, Z.Y. Desta, Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks, Chem. Rev. 112 (2012) 6104-6155.[3] G.S. Singh, Z.Y. Desta, Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks, Chem. Rev. 112 (2012) 6104-6155.

    4. [4] H. Diirr, R. Gleiter, Spiroconjugation, Angew. Chem. Int. Ed. 17 (1978) 559-569.[4] H. Diirr, R. Gleiter, Spiroconjugation, Angew. Chem. Int. Ed. 17 (1978) 559-569.

    5. [5] B. Gleiter, H. Hoffmann, H. Irngartinger, M. Nixdorf, Donor-acceptor spiro-compounds- syntheses, structures and electronic properties, Chem. Ber. 127 (1994) 2215-2224.[5] B. Gleiter, H. Hoffmann, H. Irngartinger, M. Nixdorf, Donor-acceptor spiro-compounds- syntheses, structures and electronic properties, Chem. Ber. 127 (1994) 2215-2224.

    6. [6] J. Sun, Y.J. Xie, C.G. Yan, Construction of dispirocyclopentanebisoxindoles via selfdomino michael-aldol reactions of 3-phenacylideneoxindoles, J. Org. Chem. 78 (2013) 8354-8365.[6] J. Sun, Y.J. Xie, C.G. Yan, Construction of dispirocyclopentanebisoxindoles via selfdomino michael-aldol reactions of 3-phenacylideneoxindoles, J. Org. Chem. 78 (2013) 8354-8365.

    7. [7] K. Murai, H. Komatsu, R. Nagao, H. Fujioka, Oxidative rearrangement of spiro cyclobutane cyclic aminals: efficient construction of bicyclic amidines, Org. Lett. 14 (2012) 772-775.[7] K. Murai, H. Komatsu, R. Nagao, H. Fujioka, Oxidative rearrangement of spiro cyclobutane cyclic aminals: efficient construction of bicyclic amidines, Org. Lett. 14 (2012) 772-775.

    8. [8] W.Y. Xu, Y.M. Jia, J.K. Yang, Z.T. Huang, C.Y. Yu, Reactions of heterocyclic detene aminals with 2-[3-oxoisobenzofuran-1(3H)-ylidenne]malononitrile: synthesis of novel polyfunctionalized 1,4-dihydropyridine-fused 1,3-diazaheterocycles, Synlett 11 (2010) 1682-1684.[8] W.Y. Xu, Y.M. Jia, J.K. Yang, Z.T. Huang, C.Y. Yu, Reactions of heterocyclic detene aminals with 2-[3-oxoisobenzofuran-1(3H)-ylidenne]malononitrile: synthesis of novel polyfunctionalized 1,4-dihydropyridine-fused 1,3-diazaheterocycles, Synlett 11 (2010) 1682-1684.

    9. [9] F. Shi, G.J. Xing, R.Y. Zhu, W. Tan, S.J. Tu, A catalytic asymmetric isatin-involved povarov reaction: diastereo- and enantioselective construction of spiro[indolin- 3,2'-quinoline] scaffold, Org. Lett. 15 (2013) 1128-1131.[9] F. Shi, G.J. Xing, R.Y. Zhu, W. Tan, S.J. Tu, A catalytic asymmetric isatin-involved povarov reaction: diastereo- and enantioselective construction of spiro[indolin- 3,2'-quinoline] scaffold, Org. Lett. 15 (2013) 1128-1131.

    10. [10] S. Pal, M.N. Khan, S. Karamthulla, S.J. Abbas, L.H. Choudhury, One pot fourcomponent reaction for the efficient synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylate derivatives, Tetrahedron Lett. 54 (2013) 5434-5440.[10] S. Pal, M.N. Khan, S. Karamthulla, S.J. Abbas, L.H. Choudhury, One pot fourcomponent reaction for the efficient synthesis of spiro[indoline-3,4'-pyrano[2,3-c]pyrazole]-3'-carboxylate derivatives, Tetrahedron Lett. 54 (2013) 5434-5440.

    11. [11] F.Y. Miyake, K. Yakushijin, D.A. Horne, Preparation and synthetic applications of 2-halotryptamines: synthesis of elacomine and isoelacomine, Org. Lett. 6 (2004) 711-713.[11] F.Y. Miyake, K. Yakushijin, D.A. Horne, Preparation and synthetic applications of 2-halotryptamines: synthesis of elacomine and isoelacomine, Org. Lett. 6 (2004) 711-713.

    12. [12] B. Tan, N.R. Candeias, C.F. Barbas Ⅲ, Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst, Nat. Chem. 3 (2011) 473-477.[12] B. Tan, N.R. Candeias, C.F. Barbas Ⅲ, Construction of bispirooxindoles containing three quaternary stereocentres in a cascade using a single multifunctional organocatalyst, Nat. Chem. 3 (2011) 473-477.

    13. [13] S. Rapposelli, M.C. Breschi, V. Calderone, et al.,A. Balsamo, Synthesis and biological evaluation of 5-membered spiro heterocycle-benzopyran derivatives against myocardial ischemia, Eur. J. Med. Chem. 46 (2011) 966-973.[13] S. Rapposelli, M.C. Breschi, V. Calderone, et al.,A. Balsamo, Synthesis and biological evaluation of 5-membered spiro heterocycle-benzopyran derivatives against myocardial ischemia, Eur. J. Med. Chem. 46 (2011) 966-973.

    14. [14] C.W. Lee, R. Lira, J. Dutra, K. Ogilvie, et al., Stereoselective synthesis of spiropiperidines as BACE-1 aspartyl protease inhibitors via late stage N-arylation of a 1,8-diazaspiro[4.5]dec-3-en-2-one pharmacophore, J. Org. Chem. 78 (2013) 2661-2669.[14] C.W. Lee, R. Lira, J. Dutra, K. Ogilvie, et al., Stereoselective synthesis of spiropiperidines as BACE-1 aspartyl protease inhibitors via late stage N-arylation of a 1,8-diazaspiro[4.5]dec-3-en-2-one pharmacophore, J. Org. Chem. 78 (2013) 2661-2669.

    15. [15] M. Rottmann, C. McNamara, B.K.S. Yeung, et al., Spiroindolones, a potent compound class for the treatment of malaria, Science 329 (2010) 1175-1180.[15] M. Rottmann, C. McNamara, B.K.S. Yeung, et al., Spiroindolones, a potent compound class for the treatment of malaria, Science 329 (2010) 1175-1180.

    16. [16] A. Elbert, M. Schindler, R. Nauen, P. Jeschke, Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (2011) 2897-2908.[16] A. Elbert, M. Schindler, R. Nauen, P. Jeschke, Overview of the status and global strategy for neonicotinoids, J. Agric. Food Chem. 59 (2011) 2897-2908.

    17. [17] S. Kagabu, Discovery of imidacloprid and further developments from strategic molecular designs, J. Agric. Food Chem. 59 (2011) 2887-2896.[17] S. Kagabu, Discovery of imidacloprid and further developments from strategic molecular designs, J. Agric. Food Chem. 59 (2011) 2887-2896.

    18. [18] M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticides: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269.[18] M. Tomizawa, J.E. Casida, Molecular recognition of neonicotinoid insecticides: the determinants of life or death, Acc. Chem. Res. 42 (2009) 260-269.

    19. [19] R. Nauen, I. Denholm, Resistance of insect pests to neonicotinoid insecticides: current status and future prospects, Arch. Insect. Biochem. Physiol. 58 (2005) 200-215.[19] R. Nauen, I. Denholm, Resistance of insect pests to neonicotinoid insecticides: current status and future prospects, Arch. Insect. Biochem. Physiol. 58 (2005) 200-215.

    20. [20] M. Henry, M. Bé guin, F. Requier, et al., A common pesticide decreases foraging success and survival in honey bees, Science 336 (2012) 348-350.[20] M. Henry, M. Bé guin, F. Requier, et al., A common pesticide decreases foraging success and survival in honey bees, Science 336 (2012) 348-350.

    21. [21] S.A. Cameron, J.D. Lozier, J.P. Strange, et al., Patterns of widespread decline in North American bumble bees, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 662-667.[21] S.A. Cameron, J.D. Lozier, J.P. Strange, et al., Patterns of widespread decline in North American bumble bees, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 662-667.

    22. [22] X.S. Shao, P.W. Lee, Z.W. Liu, et al., cis-Configuration: a new tactic/rationale for neonicotinoid molecular design, J. Agric. Food Chem. 59 (2011) 2943-2949.[22] X.S. Shao, P.W. Lee, Z.W. Liu, et al., cis-Configuration: a new tactic/rationale for neonicotinoid molecular design, J. Agric. Food Chem. 59 (2011) 2943-2949.

    23. [23] X.S. Shao, Z. Li, X.H. Qian, X.Y. Xu, Design, synthesis and insecticidal activities of novel analogues of neonicotinoids: replacement of nitromethylene with nitroconjugated system, J. Agric. Food Chem. 57 (2009) 951-957.[23] X.S. Shao, Z. Li, X.H. Qian, X.Y. Xu, Design, synthesis and insecticidal activities of novel analogues of neonicotinoids: replacement of nitromethylene with nitroconjugated system, J. Agric. Food Chem. 57 (2009) 951-957.

    24. [24] X.S.Shao,H.Fu, X.Y.Xu, etal.,Divalentandoxabridgedneonicotinoidsconstructedby dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities, J. Agric. Food Chem. 58 (2010) 2696-2702.[24] X.S.Shao,H.Fu, X.Y.Xu, etal.,Divalentandoxabridgedneonicotinoidsconstructedby dialdehydes and nitromethylene analogues of imidacloprid: design, synthesis, crystal structure, and insecticidal activities, J. Agric. Food Chem. 58 (2010) 2696-2702.

    25. [25] W.W. Zhang, X.B. Yang, W.D. Chen, et al., Design, multicomponet synthesis, and bioactivities of novel neonicotinoid analogues with 1,4-dihydropyridine scaffold, J. Agric. Food Chem. 58 (2010) 2741-2745.[25] W.W. Zhang, X.B. Yang, W.D. Chen, et al., Design, multicomponet synthesis, and bioactivities of novel neonicotinoid analogues with 1,4-dihydropyridine scaffold, J. Agric. Food Chem. 58 (2010) 2741-2745.

    26. [26] A. Alizadeh, T. Firuzyar, A. Mikaeili, Efficient one-pot synthesis of spirooxindole derivatives containing 1,4-dihydropyridine-fused-1,3-diazaheterocycle fragments via four-component reaction, Synthesis 22 (2010) 3913-3917.[26] A. Alizadeh, T. Firuzyar, A. Mikaeili, Efficient one-pot synthesis of spirooxindole derivatives containing 1,4-dihydropyridine-fused-1,3-diazaheterocycle fragments via four-component reaction, Synthesis 22 (2010) 3913-3917.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1382
  • HTML全文浏览量:  47
文章相关
  • 收稿日期:  2013-09-23
  • 网络出版日期:  2013-11-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章