A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN'O' Schiff base ligand: Synthesis, characterization, crystal structure determination, thermal study and catalytic activity

Gholamhossein Grivani Abbase Ghavami Válav Eigner Michal Dušek Aliakbar Dehno Khalaji

Citation:  Gholamhossein Grivani, Abbase Ghavami, Válav Eigner, Michal Dušek, Aliakbar Dehno Khalaji. A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN'O' Schiff base ligand: Synthesis, characterization, crystal structure determination, thermal study and catalytic activity[J]. Chinese Chemical Letters, 2015, 26(6): 779-784. doi: 10.1016/j.cclet.2015.03.014 shu

A new oxidovanadium(IV) Schiff base complex containing asymmetric tetradentate ONN'O' Schiff base ligand: Synthesis, characterization, crystal structure determination, thermal study and catalytic activity

    通讯作者: Gholamhossein Grivani,
摘要: After synthesis of an asymmetric tetradentate ONN'O' Schiff base ligand (H2L) followed by reaction of the synthesized H2L with an equimolar mixture of methanolic solutions of the VO(acac)2, a new oxidovanadium(IV) Schiff base complex (VOL) was synthesized. The Schiff base ligand and its complex were characterized by FT-IR and UV-vis spectra and C, H, N analysis. The crystal structure of VOL was also determined by single crystal X-ray analysis. The VOL complex crystallizes in monoclinic space group Cc. The Schiff base ligand acts as a tetradentate ligand through its two iminic nitrogens and two phenolic and acetylacetonate oxygens. Thermogravimetric analysis of the VOL showed that it decomposes in two steps and converts to mixed vanadium oxides at 477℃. In addition, thermal decomposition of the VOL complex in air at 660℃ leads to formation of V2O5 nanoparticles with the average size estimated from XRD 49 nm. The catalytic activity of the VOL complex was investigated in the epoxidation reaction and different reaction parameters were optimized. The results showed that the cyclic alkenes were efficiently converted to the corresponding epoxides, whereas the VOL did not appreciably convert the linear alkenes.

English

  • 
    1. [1] M. Shebl, Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N2O2 Schiff base ligand derived from 4 6-diacetylresorcinol and benzylamine, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 70 (2008) 850-859.[1] M. Shebl, Synthesis and spectroscopic studies of binuclear metal complexes of a tetradentate N2O2 Schiff base ligand derived from 4 6-diacetylresorcinol and benzylamine, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 70 (2008) 850-859.

    2. [2] M. Hobady, T.D. Smith, N,N'-ethylenebis(salicylideneiminato) transition metal ion chelates, Coord. Chem. Rev. 9 (1973) 311-337.[2] M. Hobady, T.D. Smith, N,N'-ethylenebis(salicylideneiminato) transition metal ion chelates, Coord. Chem. Rev. 9 (1973) 311-337.

    3. [3] D.N. Dhar, C.L. Taploo, Schiff bases and their applications, J. Sci. Ind. Res. 41 (1982) 501-506.[3] D.N. Dhar, C.L. Taploo, Schiff bases and their applications, J. Sci. Ind. Res. 41 (1982) 501-506.

    4. [4] P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Biological properties of Schiff bases and azo derivatives of phenols, Curr. Org. Chem. 13 (2009) 124-148.[4] P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski, F. Bartl, Biological properties of Schiff bases and azo derivatives of phenols, Curr. Org. Chem. 13 (2009) 124-148.

    5. [5] A.A. Khandar, S.A. Hosseini-Yazdi, S.A. Zarei, Synthesis, characterization and X-ray crystal structures of copper(II) and nickel(II) complexes with potentially hexadentate Schiff base ligands, Inorg. Chim. Acta 358 (2005) 3211-3217.[5] A.A. Khandar, S.A. Hosseini-Yazdi, S.A. Zarei, Synthesis, characterization and X-ray crystal structures of copper(II) and nickel(II) complexes with potentially hexadentate Schiff base ligands, Inorg. Chim. Acta 358 (2005) 3211-3217.

    6. [6] P.K. Mascharak, Structural and functional models of nitrile hydratase, Coord. Chem. Rev. 225 (2002) 201-214.[6] P.K. Mascharak, Structural and functional models of nitrile hydratase, Coord. Chem. Rev. 225 (2002) 201-214.

    7. [7] J.G. Muller, L.A. Kayser, S.J. Paikoff, et al., Formation of DNA adducts using nickel(II) complexes of redox-active ligands: a comparison of salen and peptide complexes, Coord. Chem. Rev. 185-186 (1999) 761-774.[7] J.G. Muller, L.A. Kayser, S.J. Paikoff, et al., Formation of DNA adducts using nickel(II) complexes of redox-active ligands: a comparison of salen and peptide complexes, Coord. Chem. Rev. 185-186 (1999) 761-774.

    8. [8] D.P. Kessissoglou, Homo-and mixed-valence EPR-active trinuclear manganese complexes, Coord. Chem. Rev. 185 (1999) 837-858.[8] D.P. Kessissoglou, Homo-and mixed-valence EPR-active trinuclear manganese complexes, Coord. Chem. Rev. 185 (1999) 837-858.

    9. [9] J.W. Pyrz, A.L. Roe, L.J. Stern, L. Que, Model studies of iron-tyrosinate proteins, J. Am. Chem. Soc. 107 (1985) 614-620.[9] J.W. Pyrz, A.L. Roe, L.J. Stern, L. Que, Model studies of iron-tyrosinate proteins, J. Am. Chem. Soc. 107 (1985) 614-620.

    10. [10] V.E. Kaasjager, L. Puglisi, E. Bouwman, W.L. Driessen, J. Reedijk, Synthesis, characterization and crystal structures of nickel complexes with dissymmetric tetradentate ligands containing a mixed-donor sphere, Inorg. Chim. Acta 310 (2000) 183-190.[10] V.E. Kaasjager, L. Puglisi, E. Bouwman, W.L. Driessen, J. Reedijk, Synthesis, characterization and crystal structures of nickel complexes with dissymmetric tetradentate ligands containing a mixed-donor sphere, Inorg. Chim. Acta 310 (2000) 183-190.

    11. [11] A.S. Al-Shihri, Synthesis, characterization and thermal analysis of some new transition metal complexes of a polydentate Schiff base, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60 (2004) 1189-1192.[11] A.S. Al-Shihri, Synthesis, characterization and thermal analysis of some new transition metal complexes of a polydentate Schiff base, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 60 (2004) 1189-1192.

    12. [12] A. Butler, J.V. Walker, Marine haloperoxidases, Chem. Rev. 93 (1993) 1937-1944.[12] A. Butler, J.V. Walker, Marine haloperoxidases, Chem. Rev. 93 (1993) 1937-1944.

    13. [13] M. Andersson, A. Willetts, S. Allenmark, Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase, J. Org. Chem. 62 (1997) 8455-8458.[13] M. Andersson, A. Willetts, S. Allenmark, Asymmetric sulfoxidation catalyzed by a vanadium-containing bromoperoxidase, J. Org. Chem. 62 (1997) 8455-8458.

    14. [14] H.B. ten Brink, H.E. Schoemaker, R. Wever, Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllumnodosum: evidence for direct oxygen transfer catalysis, Eur. J. Biochem. 268 (2001) 132-138.[14] H.B. ten Brink, H.E. Schoemaker, R. Wever, Sulfoxidation mechanism of vanadium bromoperoxidase from Ascophyllumnodosum: evidence for direct oxygen transfer catalysis, Eur. J. Biochem. 268 (2001) 132-138.

    15. [15] V. Trevisan, M. Signoretto, S. Colonna, V. Pironti, G. Strukul, Microencapsulated chloroperoxidase as a recyclable catalyst for the enantioselective oxidation of sulfides with hydrogen peroxid, Angew. Chem. Int. Ed. 43 (2004) 4097-4099.[15] V. Trevisan, M. Signoretto, S. Colonna, V. Pironti, G. Strukul, Microencapsulated chloroperoxidase as a recyclable catalyst for the enantioselective oxidation of sulfides with hydrogen peroxid, Angew. Chem. Int. Ed. 43 (2004) 4097-4099.

    16. [16] C.R. Cornman, E.P. Zovinka, M.H. Meixner, Vanadium(IV) complexes of an active-site peptide of a protein tyrosine phosphatase, Inorg. Chem. 34 (1995) 5099-5100.[16] C.R. Cornman, E.P. Zovinka, M.H. Meixner, Vanadium(IV) complexes of an active-site peptide of a protein tyrosine phosphatase, Inorg. Chem. 34 (1995) 5099-5100.

    17. [17] P. Noblía, M. Vieites, B.S. Parajón-Costa, et al., Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylaldehyde semicarbazone)], J. Inorg. Biochem. 99 (2005) 443-451.[17] P. Noblía, M. Vieites, B.S. Parajón-Costa, et al., Vanadium(V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylaldehyde semicarbazone)], J. Inorg. Biochem. 99 (2005) 443-451.

    18. [18] Y. Shechter, I. Goldwaser, M. Mironchik, M. Fridkin, D. Gefel, Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes, Coord. Chem. Rev. 237 (2003) 3-11.[18] Y. Shechter, I. Goldwaser, M. Mironchik, M. Fridkin, D. Gefel, Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes, Coord. Chem. Rev. 237 (2003) 3-11.

    19. [19] A.M.B. Bastos, J.G. da Silva, P.I.S. Maia, et al., Oxovanadium(IV) and (V) complexes of acetylpyridine-derived semicarbazones exhibit insulin-like activity, Polyhedron 27 (2008) 1787-1794.[19] A.M.B. Bastos, J.G. da Silva, P.I.S. Maia, et al., Oxovanadium(IV) and (V) complexes of acetylpyridine-derived semicarbazones exhibit insulin-like activity, Polyhedron 27 (2008) 1787-1794.

    20. [20] R.R. Eady, Current status of structure function relationships of vanadium nitrogenase, Coord. Chem. Rev. 237 (2003) 23-30.[20] R.R. Eady, Current status of structure function relationships of vanadium nitrogenase, Coord. Chem. Rev. 237 (2003) 23-30.

    21. [21] J.A.L. da Silva, J.J.R. Fraústoda Silva, A.J.L. Pombeiro, Oxovanadium complexes in catalytic oxidations, Coord. Chem. Rev. 255 (2011) 2232-2248.[21] J.A.L. da Silva, J.J.R. Fraústoda Silva, A.J.L. Pombeiro, Oxovanadium complexes in catalytic oxidations, Coord. Chem. Rev. 255 (2011) 2232-2248.

    22. [22] G. Licini, V. Conte, A. Coletti, M. Mba, C. Zonta, Recent advances in vanadium catalyzed oxygen transfer reactions, Coord. Chem. Rev. 255 (2011) 2345-2357.[22] G. Licini, V. Conte, A. Coletti, M. Mba, C. Zonta, Recent advances in vanadium catalyzed oxygen transfer reactions, Coord. Chem. Rev. 255 (2011) 2345-2357.

    23. [23] V. Conte, F. Di Furia, G. Licini, Liquid phase oxidation reactions by peroxides in the presence of vanadium complexes, Appl. Catal. A: Gen. 157 (1997) 335-361.[23] V. Conte, F. Di Furia, G. Licini, Liquid phase oxidation reactions by peroxides in the presence of vanadium complexes, Appl. Catal. A: Gen. 157 (1997) 335-361.

    24. [24] S. Mohebbi, D.M. Boghaei, A.H. Sarvestani, Oxovanadium(IV) complexes as homogeneous catalyst—aerobic epoxidation of olefins, Appl. Catal. A: Gen. 278 (2005) 263-267.[24] S. Mohebbi, D.M. Boghaei, A.H. Sarvestani, Oxovanadium(IV) complexes as homogeneous catalyst—aerobic epoxidation of olefins, Appl. Catal. A: Gen. 278 (2005) 263-267.

    25. [25] W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino, H. Yamamoto, Enantioselective epoxidation of allylic alcohols by a chiral complex of vanadium: an effective controller system and a rational mechanistic model, Angew. Chem. Int. Ed. Engl. 44 (2005) 4389-4391.[25] W. Zhang, A. Basak, Y. Kosugi, Y. Hoshino, H. Yamamoto, Enantioselective epoxidation of allylic alcohols by a chiral complex of vanadium: an effective controller system and a rational mechanistic model, Angew. Chem. Int. Ed. Engl. 44 (2005) 4389-4391.

    26. [26] J.H. Hwang, M. Abu-Omar, New vanadium oxazoline catalysts for epoxidation of allylic alcohols, Tetrahedron Lett. 40 (1999) 8313-8316.[26] J.H. Hwang, M. Abu-Omar, New vanadium oxazoline catalysts for epoxidation of allylic alcohols, Tetrahedron Lett. 40 (1999) 8313-8316.

    27. [27] M. Bagherzadeh, M. Amini, A new vanadium Schiff base complex as catalyst for oxidation of alcohols, J. Coord. Chem. 63 (2010) 3849-3858.[27] M. Bagherzadeh, M. Amini, A new vanadium Schiff base complex as catalyst for oxidation of alcohols, J. Coord. Chem. 63 (2010) 3849-3858.

    28. [28] E. Battistel, R. Tassinari, M. Fornaroli, L. Bonoldi, Oxidation of benzene by molecular oxygen catalysed by vanadium, J. Mol. Catal. A: Chem. 202 (2003) 107-115.[28] E. Battistel, R. Tassinari, M. Fornaroli, L. Bonoldi, Oxidation of benzene by molecular oxygen catalysed by vanadium, J. Mol. Catal. A: Chem. 202 (2003) 107-115.

    29. [29] G.B. Shul'pin, G. Süss-Fink, Oxidations by the reagent ‘H2O2-vanadium complex-pyrazine-2-carboxylic acid'. Part 4. Oxidation of alkanes, benzene and alcohols by an adduct of H2O2 with urea, J. Chem. Soc., Perkin Trans. 2 (1995) 1459-1463.[29] G.B. Shul'pin, G. Süss-Fink, Oxidations by the reagent ‘H2O2-vanadium complex-pyrazine-2-carboxylic acid'. Part 4. Oxidation of alkanes, benzene and alcohols by an adduct of H2O2 with urea, J. Chem. Soc., Perkin Trans. 2 (1995) 1459-1463.

    30. [30] A. Barbarini, R. Maggi, M. Muratori, G. Sartori, R. Sartorio, Enantioselectivesulfoxidation catalyzed by polymer-supported chiral Schiff base-VO(acac)2 complexes, Tetrahedron: Asymmetry 15 (2004) 2467-2473.[30] A. Barbarini, R. Maggi, M. Muratori, G. Sartori, R. Sartorio, Enantioselectivesulfoxidation catalyzed by polymer-supported chiral Schiff base-VO(acac)2 complexes, Tetrahedron: Asymmetry 15 (2004) 2467-2473.

    31. [31] T.S. Smith II., V.L. Pecoraro, Oxidation of organic sulfides by vanadium haloperoxidase model complexes, Inorg. Chem. 41 (2002) 6754-6760.[31] T.S. Smith II., V.L. Pecoraro, Oxidation of organic sulfides by vanadium haloperoxidase model complexes, Inorg. Chem. 41 (2002) 6754-6760.

    32. [32] R. Ando, H. Ono, T. Yagyu, M. Maeda, Characterization of oxovanadium(IV)-Schiffbase complexes and those bound on resin, and their use in sulfide oxidation, Inorg. Chim. Acta. 357 (2004) 2237-2244.[32] R. Ando, H. Ono, T. Yagyu, M. Maeda, Characterization of oxovanadium(IV)-Schiffbase complexes and those bound on resin, and their use in sulfide oxidation, Inorg. Chim. Acta. 357 (2004) 2237-2244.

    33. [33] A. Biswas, M. Drew, A. Ghosh, Nickel(II) and copper(II) complexes of unsymmetrical tetradentate reduced Schiff base ligands, Polyhedron 29 (2010) 1029-1034.[33] A. Biswas, M. Drew, A. Ghosh, Nickel(II) and copper(II) complexes of unsymmetrical tetradentate reduced Schiff base ligands, Polyhedron 29 (2010) 1029-1034.

    34. [34] L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Crystallogr. 40 (2007) 786-790.[34] L. Palatinus, G. Chapuis, SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions, J. Appl. Crystallogr. 40 (2007) 786-790.

    35. [35] V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features, Zeitschriftfür Kristallographie 229 (2014) 345-352.[35] V. Petříček, M. Dušek, L. Palatinus, Crystallographic computing system JANA2006: general features, Zeitschriftfür Kristallographie 229 (2014) 345-352.

    36. [36] L.J. Farrugia, ORTEP-3 for Windows-a version of ORTEP-III with a graphical user interface (GUI), J. Appl. Crystallogr. 30 (1997) 565.[36] L.J. Farrugia, ORTEP-3 for Windows-a version of ORTEP-III with a graphical user interface (GUI), J. Appl. Crystallogr. 30 (1997) 565.

    37. [37] R. Ando, S. Mori, M. Hayashi, T. Yagyu, M. Maeda, Structural characterization of pentadentatesalen-type Schiff-base complexes of oxovanadium(IV) and their use in sulfide oxidation, Inorg. Chim. Acta 357 (2004) 1177-1184.[37] R. Ando, S. Mori, M. Hayashi, T. Yagyu, M. Maeda, Structural characterization of pentadentatesalen-type Schiff-base complexes of oxovanadium(IV) and their use in sulfide oxidation, Inorg. Chim. Acta 357 (2004) 1177-1184.

    38. [38] C.J. Chang, J.A. Labinger, H.B. Gray, Aerobic epoxidation of olefins catalyzed by electronegative vanadyl salen complexes, Inorg. Chem. 36 (1997) 5927-5930.[38] C.J. Chang, J.A. Labinger, H.B. Gray, Aerobic epoxidation of olefins catalyzed by electronegative vanadyl salen complexes, Inorg. Chem. 36 (1997) 5927-5930.

    39. [39] J. Rahchamani, M. Behzad, A. Bezadpour, et al., Oxidovanadium complexes with tetradentate Schiff bases: synthesis, structural, electrochemical and catalytic studies, Polyhedron 30 (2011) 2611-2618.[39] J. Rahchamani, M. Behzad, A. Bezadpour, et al., Oxidovanadium complexes with tetradentate Schiff bases: synthesis, structural, electrochemical and catalytic studies, Polyhedron 30 (2011) 2611-2618.

    40. [40] S. Rayati, M. Koliaei, F. Ashouri, et al., Oxovanadium(IV) Schiff base complexes derived from 2 2'-dimethylpropandiamine: a homogeneous catalyst for cyclooctene and styrene oxidation, Appl. Catal. A: Gen. 346 (2008) 65-71.[40] S. Rayati, M. Koliaei, F. Ashouri, et al., Oxovanadium(IV) Schiff base complexes derived from 2 2'-dimethylpropandiamine: a homogeneous catalyst for cyclooctene and styrene oxidation, Appl. Catal. A: Gen. 346 (2008) 65-71.

    41. [41] G. Grivani, S. Delkhosh, K. Fejfarová, M. Dušek, A.D. Khalaji, Polynuclear oxovanadium( IV) Schiff base complex [VOL2]n (L = (5-bromo-2-hydroxybenzyl-2-furylmethyl) imine): synthesis, characterization, crystal structure, catalytic properties and thermal decomposition into V2O5 nano-particles, Inorg. Chem. Commun. 27 (2013) 82-87.[41] G. Grivani, S. Delkhosh, K. Fejfarová, M. Dušek, A.D. Khalaji, Polynuclear oxovanadium( IV) Schiff base complex [VOL2]n (L = (5-bromo-2-hydroxybenzyl-2-furylmethyl) imine): synthesis, characterization, crystal structure, catalytic properties and thermal decomposition into V2O5 nano-particles, Inorg. Chem. Commun. 27 (2013) 82-87.

    42. [42] G. Grivani, G. Bruno, H.A. Rudbari, A.D. Khalaji, P. Pourteimouri, Synthesis, characterization and crystal structure determination of a new oxovanadium(IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene, Inorg. Chem. Commun. 18 (2012) 15-20.[42] G. Grivani, G. Bruno, H.A. Rudbari, A.D. Khalaji, P. Pourteimouri, Synthesis, characterization and crystal structure determination of a new oxovanadium(IV) Schiff base complex: the catalytic activity in the epoxidation of cyclooctene, Inorg. Chem. Commun. 18 (2012) 15-20.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  1236
  • HTML全文浏览量:  15
文章相关
  • 发布日期:  2015-03-27
  • 收稿日期:  2014-10-19
  • 网络出版日期:  2015-02-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章